Fertilization, the fusion of sperm and oocyte to form a zygote, is the first and arguably the most important cell-cell interaction event in an organism's life. Forward and reverse genetic approaches in the nematode Caenorhabditis elegans have identified many genes that are required for gametogenesis and fertilization and thus are beginning to elucidate the molecular pathways that underlie these processes. We identified an allele of the spe-49 gene in a second filial generation (F ) mutagenesis screen for spermatogenesis-defective (spe) mutants.
View Article and Find Full Text PDFSecretory vesicles are used during spermatogenesis to deliver proteins to the cell surface. In Caenorhabditis elegans, secretory membranous organelles (MO) fuse with the plasma membrane to transform spermatids into fertilization-competent spermatozoa. We show that, like the acrosomal vesicle of mammalian sperm, MOs undergo acidification during development.
View Article and Find Full Text PDFThe phenomenon of phase variation between yellow and tan forms of Myxococcus xanthus has been recognized for several decades, but it is not known what role this variation may play in the ecology of myxobacteria. We confirm an earlier report that tan variants are disproportionately more numerous in the resulting spore population of a M. xanthus fruiting body than the tan vegetative cells that contributed to fruiting body formation.
View Article and Find Full Text PDFBackground: The C. elegans sperm protein SPE-42, a membrane protein of unknown structure and molecular function, is required for fertilization. Sperm from worms with spe-42 mutations appear normal but are unable to fertilize eggs.
View Article and Find Full Text PDFC. elegans spermatogenesis employs lysosome-related fibrous body-membranous organelles (FB-MOs) for transport of many cellular components. Previous work showed that spe-10 mutants contain FB-MOs that prematurely disassemble, resulting in defective transport of FB components into developing spermatids.
View Article and Find Full Text PDFFertilization, the union of sperm and egg to form a new organism, is a critical process that bridges generations. Although the cytological and physiological aspects of fertilization are relatively well understood, little is known about the molecular interactions that occur between gametes. C.
View Article and Find Full Text PDFTranscription of the mouse testis-specific lactate dehydrogenase c (mldhc) gene is limited to cells of the germinal epithelium. Cloning and analysis of the mldhc promoter revealed that a 100-bp core promoter was able to regulate testis-specific transcription in vitro and in transgenic mice. Surprisingly, expression of the reporter in transgenic testes was limited to pachytene spermatocytes, whereas native LDH-C(4) was detected in pachytene and all later germ cells.
View Article and Find Full Text PDF