We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities. The technique uses quantum optimal control to favorably harness the multipath interference of the stray trajectories produced by imperfect atom-optics operations. We apply this method to a resonant atom interferometer and achieve thousandfold phase amplification, representing a 50-fold improvement over the performance observed without optimized control.
View Article and Find Full Text PDFWe present a laser system for performing single-photon atom interferometry on the 698 nm clock transition in ultracold strontium. We coherently combine the power of two titanium:sapphire lasers and demonstrate chirps of 200 MHz in 2.5 ms while phase-locked to an optical reference.
View Article and Find Full Text PDFIn an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species.
View Article and Find Full Text PDFSpacetime curvature induces tidal forces on the wave function of a single quantum system. Using a dual light-pulse atom interferometer, we measure a phase shift associated with such tidal forces. The macroscopic spatial superposition state in each interferometer (extending over 16 cm) acts as a nonlocal probe of the spacetime manifold.
View Article and Find Full Text PDFUsing a matter wave lens and a long time of flight, we cool an ensemble of ^{87}Rb atoms in two dimensions to an effective temperature of less than 50_{-30}^{+50} pK. A short pulse of red-detuned light generates an optical dipole force that collimates the ensemble. We also report a three-dimensional magnetic lens that substantially reduces the chemical potential of evaporatively cooled ensembles with a high atom number.
View Article and Find Full Text PDFWe demonstrate high-efficiency frequency doubling of the combined output of two 1560 nm 30 W fiber amplifiers via single pass through periodically poled lithium niobate (PPLN) crystals. The temporal profile of the 780 nm output is controlled by adjusting the relative phase between the seeds of the amplifiers. We obtain a peak power of 34 W of 780 nm light by passing the combined output through one PPLN crystal, and a peak power of 43 W by passing through two cascading PPLN crystals.
View Article and Find Full Text PDFWe have demonstrated a 100-fold improvement in the magnetic field uniformity on the axis of a large aspect ratio, cylindrical, mumetal magnetic shield by reducing discontinuities in the material of the shield through the welding and re-annealing of a segmented shield. The three-layer shield reduces Earth's magnetic field along an 8 m region to 420 μG (rms) in the axial direction, and 460 and 730 μG (rms) in the two transverse directions. Each cylindrical shield is a continuous welded tube which has been annealed after manufacture and degaussed in the apparatus.
View Article and Find Full Text PDFWe demonstrate atom interferometers utilizing a novel beam splitter based on sequential multiphoton Bragg diffractions. With this sequential Bragg large momentum transfer (SB-LMT) beam splitter, we achieve high contrast atom interferometers with momentum splittings of up to 102 photon recoil momenta (102ℏk). To our knowledge, this is the highest momentum splitting achieved in any atom interferometer, advancing the state-of-the-art by an order of magnitude.
View Article and Find Full Text PDF