The plastid stroma-localized chaperone HSP90C plays a crucial role in maintaining optimal proteostasis within chloroplasts and participates in protein translocation processes. While existing studies have revealed HSP90C's direct interaction with the Sec translocase-dependent client pre-protein PsbO1 and the SecY1 subunit of the thylakoid membrane-bound Sec1 translocase channel system, its direct involvement with the extrinsic homodimeric Sec translocase subunit, SecA1, remains elusive. Employing bimolecular fluorescence complementation (BiFC) assay and other in vitro analyses, we unraveled potential interactions between HSP90C and SecA1.
View Article and Find Full Text PDFChloroplast stromal factors involved in regulating thylakoid protein targeting are poorly understood. We previously reported that in Arabidopsis thaliana, the stromal-localized chaperone HSP90C (plastid heat shock protein 90) interacted with the nuclear-encoded thylakoid lumen protein PsbO1 (PSII subunit O isoform 1) and suggested a role for HSP90C in aiding PsbO1 thylakoid targeting. Using in organello transport assays, particularly with model substrates naturally expressed in stroma, we showed that light, exogenous ATP, and HSP90C activity were required for Sec-dependent transport of green fluorescent protein (GFP) led by the PsbO1 thylakoid targeting sequence.
View Article and Find Full Text PDFArabidopsis plastidic HSP90C is an HSP90 family molecular chaperone that is required for chloroplast development and function. To understand the mechanism of action of HSP90C within the chloroplast, we conducted a yeast two-hybrid screening and revealed it interacts directly with the photosystem II extrinsic protein PsbO1, which performs a canonical function in the thylakoid lumen. To understand the biological significance of HSP90C-PsbO1 interaction, we investigated the role of HSP90C in modulating the stromal and thylakoid distribution of PsbO1GFP fusion protein.
View Article and Find Full Text PDF