Bacillus thuringiensis strains are well known for the production of insecticidal proteins upon sporulation and these proteins are deposited in parasporal crystalline inclusions. The majority of these insect-specific toxins exhibit three domains in the mature toxin sequence. However, other Cry toxins are structurally and evolutionarily unrelated to this three-domain family and little is known of their three dimensional structures, limiting our understanding of their mechanisms of action and our ability to engineer the proteins to enhance their function.
View Article and Find Full Text PDFBackground: Isopropanol is widely used by conservators to relax the creases and folds of parchment artefacts. At present, little is known of the possible side effects of the chemical on parchments main structural component- collagen. This study uses X-ray Diffraction to investigate the effects of a range of isopropanol concentrations on the dimensions of the nanostructure of the collagen component of new parchment.
View Article and Find Full Text PDFParchment has been in use for thousands of years and has been used as the writing or drawing support for many important historic works. A variety of analytical techniques is currently used for routine assessment of the degree of denaturation of historic parchment; however, because parchment has a heterogeneous nature, analytical methods with high spatial resolution are desirable. In this work, the use of small-angle X-ray scattering (SAXS) and synchrotron-IR (SR-IR) was examined in conjunction with multivariate data analysis to study degradation of an extended set of historic parchment samples, and particularly to investigate the effect of lipids and the presence of iron gall ink on the degradation processes.
View Article and Find Full Text PDFElastin enables the reversible deformation of elastic tissues and can withstand decades of repetitive forces. Tropoelastin is the soluble precursor to elastin, the main elastic protein found in mammals. Little is known of the shape and mechanism of assembly of tropoelastin as its unique composition and propensity to self-associate has hampered structural studies.
View Article and Find Full Text PDFMutations in fibrillin-1 result in Marfan syndrome, which affects the cardiovascular, skeletal and ocular systems. The multiorgan involvement and wide spectrum of associated phenotypes highlights the complex pathogenesis underlying Marfan syndrome. To elucidate the genotype to phenotype correlations, we engineered four Marfan syndrome causing mutations into a fibrillin-1 fragment encoded by exons 18-25, a region known to interact with tropoelastin.
View Article and Find Full Text PDFBiomacromolecules
August 2006
The manufacture of parchment from animal skin involves processes that remove hair, fats, and other macromolecules. Although it is well understood that the collagen fibers "open up" during processing, this study uses small and wide-angle X-ray diffraction to measure quantitatively the changes induced at the nanoscopic and microscopic levels. The axial rise per residue distance within the collagen molecules is unaffected by salt and lime treatments.
View Article and Find Full Text PDFFibrillin-1 is a 330-kDa multidomain extracellular matrix protein that polymerizes to form 57-nm periodic microfibrils, which are essential for all tissue elasticity. Fibrillin-1 is a member of the calcium-binding EGF repeat family and has served as a prototype for structural analyses. Nevertheless, both the detailed structure of fibrillin-1 and its organization within microfibrils are poorly understood because of the complexity of the molecule and the resistance of EGF arrays to crystallization.
View Article and Find Full Text PDFThe fibrous collagens are ubiquitous in animals and form the structural basis of all mammalian connective tissues, including those of the heart, vasculature, skin, cornea, bones, and tendons. However, in comparison with what is known of their production, turnover and physiological structure, very little is understood regarding the three-dimensional arrangement of collagen molecules in naturally occurring fibrils. This knowledge may provide insight into key biological processes such as fibrillo-genesis and tissue remodeling and into diseases such as heart disease and cancer.
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2005
The avian eggshell is a highly ordered calcitic bioceramic composite, with both inorganic and organic constituents. The interactions between the inorganic and organic components within the structure are poorly understood but are likely to occur at the nanometre level. Thus structural variation at this level may impinge on the overall structural integrity and mechanical performance of the eggshell, and therefore analysis at this level is fundamental in fully understanding this ordered structure.
View Article and Find Full Text PDFVibrational spectroscopy using polarized incident radiation can be used to determine the orientation of X-H bonds with respect to coordinates such as crystallographic axes. The adaptation of this approach to polymer fibers is described here. It requires spectral intensity to be quantified around a 180 degrees range of polarization angles and not just recorded transversely and longitudinally as is normal in fiber spectroscopy.
View Article and Find Full Text PDF