CoREST has been identified as a subunit of several protein complexes that generate transcriptionally repressive chromatin structures during development. However, a comprehensive analysis of the CoREST interactome has not been carried out. We use proteomic approaches to define the interactomes of two dCoREST isoforms, dCoREST-L and dCoREST-M, in Drosophila.
View Article and Find Full Text PDFSpermatogenesis in Drosophila melanogaster is characterized by a specific transcriptional program during the spermatocyte stage. Transcription of thousands of genes is regulated by the interaction of several proteins or complexes, including a tTAF-containing TFIID variant, tMAC, Mediator, and chromatin interactors, e.g.
View Article and Find Full Text PDFSpermiogenesis in Drosophila melanogaster is a highly conserved process and essential for male fertility. In this haploid phase of spermatogenesis, motile sperm are assembled from round cells, and flagella and needle-shaped nuclei with highly compacted genomes are formed. As transcription takes place mainly in spermatocytes and transcripts relevant for post-meiotic sperm development are translationally repressed for days, we comparatively analysed the proteome of larval testes (only germ cell stages before meiotic divisions), testes of 1-2-day-old pupae (germ cell stages before meiotic divisions, meiotic and early spermatid stages) and adult flies (germ cell stages before meiotic divisions, meiotic and early spermatid stages, late spermatids and sperm).
View Article and Find Full Text PDFSpermatogenesis in many species including Drosophila melanogaster is accompanied by major reorganisation of chromatin in post-meiotic stages, involving a nearly genome-wide displacement of histones by protamines, Mst77F and Protamine-like 99C. A proposed prerequisite for the histone-to-protamine transition is massive histone H4 hyper-acetylation prior to the switch. Here, we investigated the pattern of histone H3 lysine acetylation and general lysine crotonylation in D.
View Article and Find Full Text PDFIn the course of spermatogenesis, germ cells undergo dramatic morphological changes that affect almost all cellular components. Therefore, it is impossible to study the process of spermatogenesis in its entirety without detailed morphological analyses. Here, we describe a method to visualize chromatin dynamics in differentiating Drosophila male germ cells using immunofluorescence staining.
View Article and Find Full Text PDFMulticellular organisms have evolved specialized mechanisms to control transcription in a spatial and temporal manner. Gene activation is tightly linked to histone acetylation on lysine residues that can be recognized by bromodomains. Previously, the testis-specifically expressed bromodomain protein tBRD-1 was identified in Drosophila.
View Article and Find Full Text PDF