Am J Physiol Gastrointest Liver Physiol
October 2024
Gut motility undergoes a switch from myogenic to neurogenic control in late embryonic development. Here, we report on the electrical events that underlie this transition in the enteric nervous system, using the GCaMP6f reporter in neural crest cell derivatives. We found that spontaneous calcium activity is tetrodotoxin (TTX) resistant at stage E11.
View Article and Find Full Text PDFIn the past few years, there has been extraordinary interest in how the gut communicates with the brain. This is because substantial and gathering data has emerged to suggest that sensory nerve pathways between the gut and brain may contribute much more widely in heath and disease, than was originally presumed. In the skin, the different types of sensory nerve endings have been thoroughly characterized, including the morphology of different nerve endings and the sensory modalities they encode.
View Article and Find Full Text PDFOver 150 years ago, methods for quantitative analysis of gastrointestinal motor patterns first appeared. Graphic representations of physiological variables were recorded with the kymograph after the mid-1800s. Changes in force or length of intestinal muscles could be quantified, however most recordings were limited to a single point along the digestive tract.
View Article and Find Full Text PDFThe autonomic nervous system that regulates the gut is divided into sympathetic (SNS), parasympathetic (PNS), and enteric nervous systems (ENS). They inhibit, permit, and coordinate gastrointestinal motility, respectively. A fourth pathway, "extrinsic sensory neurons," connect gut to the central nervous system, mediating sensation.
View Article and Find Full Text PDFSensory stimuli from the uterus are detected by spinal afferent neurons whose cell bodies arise from thoracolumbar and lumbosacral dorsal root ganglia (DRG). Using an survival surgical technique developed in our laboratory to remove select DRG from live mice, we recently quantified the topographical distribution of thoracolumbar spinal afferents innervating the mouse uterine horn, revealed by loss of immunoreactivity to calcitonin gene-related peptide (CGRP). Here, we used the same technique to investigate the distribution of lumbosacral uterine spinal afferents, in which L5-S1 DRG were unilaterally removed from adult female C57BL/6J mice ( = 6).
View Article and Find Full Text PDFHow the enteric nervous system determines the pacing and propagation direction of neurogenic contractions along the colon remains largely unknown. We used a chemogenetic strategy to ablate enteric neurons expressing calretinin (CAL). Mice expressing human diphtheria toxin receptor (DTR) in CAL neurons were generated by crossing mice with -dependent mice.
View Article and Find Full Text PDFBackground And Aims: Recently, it was demonstrated that optogenetics could be used to stimulate enteric calretinin neurons, leading to increased colonic transit in vitro and in vivo. The aim of the current study was to determine if similar approaches could be used to stimulate the isolated mouse small intestine, with the aim of potentially also improving transit in the small bowel.
Methods: Cre-Lox recombination was used to generate transgenic mice expressing the light-sensitive ion channel channelrhodopsin-2 (ChR2) in calretinin neurons.
Background: Colonic high-resolution manometry (HRM) has been used to reveal discrete, propagating colonic motor patterns. To help determine mechanisms underlying these patterns, we used HRM to record contractile activity in human distal colon ex vivo.
Methods: Surgically excised segments of descending (n = 30) or sigmoid colon (n = 4) were immersed in oxygenated Krebs solution at 36°C (n = 34; 16 female; 67.
Expert Rev Gastroenterol Hepatol
April 2019
There are limited effective therapies available for improving gastrointestinal (GI) transit in mammals with intractable or chronic constipation. Current therapeutics to improve GI-transit usually require oral ingestion of therapeutic drugs, such as the serotonin receptor agonist prucalopride. However, most receptors are distributed all over the body and unsurprisingly drugs like prucalopride stimulate multiple organs, often leading to unwanted side effects.
View Article and Find Full Text PDFPainful stimuli arising within visceral organs are detected by peripheral nerve endings of spinal afferents, whose cell bodies are located in dorsal root ganglia (DRG). Recent technical advances have made it possible to reliably expose and inject single DRG with neuronal tracers or viruses in vivo. This has facilitated, for the first time, unequivocal identification of different types of spinal afferent endings in visceral organs.
View Article and Find Full Text PDFSpinal afferent neurons are responsible for the transduction and transmission of noxious (painful) stimuli and innocuous stimuli that do not reach conscious sensations from visceral organs to the central nervous system. Although the location of the nerve cell bodies of spinal afferents is well known to reside in dorsal root ganglia (DRG), the morphology and location of peripheral nerve endings of spinal afferents that transduce sensory stimuli into action potentials is poorly understood. The individual nerve endings of spinal afferents that innervate the urinary bladder have never been unequivocally identified in any species.
View Article and Find Full Text PDFCalcium imaging is commonly used to record dynamic changes in excitability from axons or cell bodies in the nervous system of vertebrates. These recordings often reveal discrete calcium transients that have variable amplitudes, durations, and rates of rise and decay, all of which can arise from an unstable or "noisy" baseline. This often leads to considerable ambiguity about how to discriminate and quantify calcium transients.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
December 2016
Spinal afferent neurons play a major role in detection and transduction of painful stimuli from internal (visceral) organs. Recent technical advances have made it possible to visualize the endings of spinal afferent axons in visceral organs. Although it is well known that the sensory nerve cell bodies of spinal afferents reside within dorsal root ganglia (DRG), identifying their endings in internal organs has been especially challenging because of a lack of techniques to distinguish them from endings of other extrinsic and intrinsic neurons (sympathetic, parasympathetic, and enteric).
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
November 2016
In vertebrates, visceral pain from internal organs is detected by spinal afferents, whose cell bodies lie in dorsal root ganglia (DRG). Until now, all recordings from spinal afferents have been restricted to recording transmission of action potentials along axons, or from cell bodies lying outside their target organ, which is not where sensory transduction occurs. Our aim was to record directly from a major class of spinal afferent within visceral organs, where transduction of sensory stimuli into action potentials occurs.
View Article and Find Full Text PDFIn visceral organs of mammals, most noxious (painful) stimuli as well as innocuous stimuli are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRGs). One of the major unresolved questions is the location, morphology, and neurochemistry of the nerve endings of spinal afferents that actually detect these stimuli in the viscera. In the upper gastrointestinal (GI) tract, there have been many anterograde tracing studies of vagal afferent endings, but none on spinal afferent endings.
View Article and Find Full Text PDF