During the last two decades, the Mont Terri rock laboratory has hosted an extensive experimental research campaign focusing on improving our understanding of radionuclide transport within Opalinus Clay. The latest diffusion experiment, the Diffusion and Retention experiment B (DR-B) has been designed based on an entirely different concept compared to all predecessor experiments. With its novel experimental methodology, which uses in-situ X-ray fluorescence (XRF) to monitor the progress of an iodide plume within the Opalinus Clay, this experiment enables large-scale and long-term data acquisition and provides an alternative method for the validation of previously acquired radionuclide transport parameters.
View Article and Find Full Text PDFSelenium is a natural trace element that is of fundamental importance to human health. The extreme geographical variation in selenium concentrations in soils and food crops has resulted in significant health problems related to deficient or excess levels of selenium in the environment. To deal with these kinds of problems in the future it is essential to get a better understanding of the processes that control the global distribution of selenium.
View Article and Find Full Text PDFGeochemical processes behind the occurrence of radium activities in excess of the U.S. EPA's drinking water limit of 5 pCi/L combined radium were investigated in a regional sandstone aquifer located in southeastern Wisconsin.
View Article and Find Full Text PDFThis work examines the abilities of two smectite minerals (SWa-1 and Wyoming montmorillonite) to adsorb ferrous iron at concentrations from 0.037 mM (2 ppm) to 2.5 mM (240 ppm) over a range of pHs from 4.
View Article and Find Full Text PDF