In an era moving towards digital health, 3D printing has successfully proven its applicability in providing personalised medicine through a technology-based approach. Among the different 3D printing techniques, direct extrusion 3D printing has been demonstrated as a promising approach for on demand manufacturing of solid dosage forms. However, it usually requires the use of elevated temperatures and/or the incorporation of an evaporable solvent (usually water).
View Article and Find Full Text PDFA new approach is described herein, where neutron reflectivity measurements that probe changes in the density profile of thin films as they absorb material from the gas phase have been combined with a Love wave based gravimetric assay that measures the mass of absorbed material. This combination of techniques not only determines the spatial distribution of absorbed molecules, but also reveals the amount of void space within the thin film (a quantity that can be difficult to assess using neutron reflectivity measurements alone). The uptake of organic solvent vapours into spun cast films of polystyrene has been used as a model system with a view to this method having the potential for extension to the study of other systems.
View Article and Find Full Text PDFThe use of near infra red spectroscopy to predict the concentration of two pharmaceutical co-crystals; 1:1 ibuprofen-nicotinamide (IBU-NIC) and 1:1 carbamazepine-nicotinamide (CBZ-NIC) has been evaluated. A partial least squares (PLS) regression model was developed for both co-crystal pairs using sets of standard samples to create calibration and validation data sets with which to build and validate the models. Parameters such as the root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP) and correlation coefficient were used to assess the accuracy and linearity of the models.
View Article and Find Full Text PDFA systematic identification of the degradation products of hydroxypropyl methylcellulose phthalate (HPMCP) during hot melt extrusion (HME) has been performed. A reverse phase HPLC method was developed for the extrudates of both hydroxypropyl methylcellulose acetate succinate (HPMCAS) and HPMCP polymers to quantify their thermal hydrolytic products: acetic acid (AA), succinic acid (SA) for HPMCAS and phthalic acid (PA) for HPMCP, without hydrolysing the polymers in strong alkaline solutions. The polymers were extruded in the temperature range of 160-190 °C at different screw rotation speeds and hydrolytic impurities were analysed.
View Article and Find Full Text PDFVisco-elastic behaviour at the nano-level of a commonly used polymer (PET) is characterised using atomic force microscopy (AFM) at a range of temperatures. The modulus, indentation creep and relaxation time of the PET film (thickness=100 μm) is highly sensitive to temperature over an experimental temperature range of 22-175°C. The analysis showed a 40-fold increase in the amount of indentation creep on raising the temperature from 22°C to 100°C, with the most rapid rise occurring above the glass-to-rubber transition temperature (T(g)=77.
View Article and Find Full Text PDFAn experimental configuration that combines the powerful capabilities of a short-term shearing apparatus with simultaneous optical and X-ray scattering techniques is demonstrated, connecting the earliest events that occur during shear-induced crystallization of a polymer melt with the subsequent kinetics and morphology development. Oriented precursors are at the heart of the great effects that flow can produce on polymer crystallization (strongly enhanced kinetics and formation of highly oriented crystallites), and their creation is highly dependent on material properties and the level of stress applied. The sensitivity of rheo-optics enables the detection of these dilute shear-induced precursors as they form during flow, before X-ray techniques are able to reveal them.
View Article and Find Full Text PDFThe motion of an artificial microscale swimmer that uses a chemical reaction catalyzed on its own surface to achieve autonomous propulsion is fully characterized experimentally. It is shown that at short times it has a substantial component of directed motion, with a velocity that depends on the concentration of fuel molecules. At longer times, the motion reverts to a random walk with a substantially enhanced diffusion coefficient.
View Article and Find Full Text PDF