Publications by authors named "Tim Fox"

Introduction: Cancer sequencing efforts have revealed that cancer is the most complex and heterogeneous disease that affects humans. However, radiation therapy (RT), one of the most common cancer treatments, is prescribed on the basis of an empirical one-size-fits-all approach. We propose that the field of radiation oncology is operating under an outdated null hypothesis: that all patients are biologically similar and should uniformly respond to the same dose of radiation.

View Article and Find Full Text PDF

Application of nitrogen fertilizer in the past 50 years has resulted in significant increases in crop yields. However, loss of nitrogen from crop fields has been associated with negative impacts on the environment. Developing maize hybrids with improved nitrogen use efficiency is a cost-effective strategy for increasing yield sustainably.

View Article and Find Full Text PDF

A system for automated quality assurance in radiotherapy of a therapist's registration was designed and tested in clinical practice. The approach compliments the clinical software's automated registration in terms of algorithm configuration and performance, and constitutes a practical approach for ensuring safe patient setups. Per our convergence analysis, evolutionary algorithms perform better in finding the global optima of the cost function with discrepancies from a deterministic optimizer seen sporadically.

View Article and Find Full Text PDF

Treatment planning for whole-brain radiation treatment is technically a simple process, but in practice it takes valuable clinical time of repetitive and tedious tasks. This report presents a method that automatically segments the relevant target and normal tissues, and creates a treatment plan in only a few minutes after patient simulation. Segmentation of target and critical structures is performed automatically through morphological operations on the soft tissue and was validated by comparing with manual clinical segmentation using the Dice coefficient and Hausdorff distance.

View Article and Find Full Text PDF

We have developed a novel hybridization platform that utilizes nuclear male sterility to produce hybrids in maize and other cross-pollinating crops. A key component of this platform is a process termed Seed Production Technology (SPT). This process incorporates a transgenic SPT maintainer line capable of propagating nontransgenic nuclear male-sterile lines for use as female parents in hybrid production.

View Article and Find Full Text PDF

Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations.

Methods And Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI.

View Article and Find Full Text PDF

Segmentation of organs at risk (OARs) remains one of the most time-consuming tasks in radiotherapy treatment planning. Atlas-based segmentation methods using single templates have emerged as a practical approach to automate the process for brain or head and neck anatomy, but pose significant challenges in regions where large interpatient variations are present. We show that significant changes are needed to autosegment thoracic and abdominal datasets by combining multi-atlas deformable registration with a level set-based local search.

View Article and Find Full Text PDF

Background: Locoregional tumor failure (LRF) after definitive chemoradiation for patients with stage III NSCLC remains unacceptably high. This analysis sought to further define where LRF occurs relative to radiation dose received and pre-treatment PET scan-defined maximum standard uptake value (SUVmax).

Methods: This was a retrospective study analyzing patients with stage III NSCLC treated with definitive radiation between 2006 and 2011.

View Article and Find Full Text PDF

Treatment planning for volumetric arc therapy (VMAT) is a lengthy process that requires many rounds of optimizations to obtain the best treatment settings and optimization constraints for a given patient's geometry. We propose a feature-selection search engine that explores previously treated cases of similar anatomy, returning the optimal plan configurations and attainable DVH constraints. Using an institutional database of 83 previously treated cases of prostate carcinoma treated with volumetric-modulated arc therapy, the search procedure first finds the optimal isocenter position with an optimization procedure, then ranks the anatomical similarity as the mean distance between targets.

View Article and Find Full Text PDF

Purpose: To assess a new method for generating patient-specific volumetric dose calculations and analyze the relationship between tumor dose and positron emission tomography (PET) response after radioembolization of hepatic melanoma metastases.

Methods And Materials: Yttrium-90 ((90)Y) bremsstrahlung single photon emission computed tomography (SPECT)/computed tomography (CT) acquired after (90)Y radioembolization was convolved with published (90)Y Monte Carlo estimated dose deposition kernels to create a three-dimensional dose distribution. Dose-volume histograms were calculated for tumor volumes manually defined from magnetic resonance imaging or PET/CT imaging.

View Article and Find Full Text PDF

Observing early metabolic changes in positron emission tomography (PET) is an essential tool to assess treatment efficiency in radiotherapy. However, for thoracic regions, the use of three-dimensional (3D) PET imaging is unfeasible because the radiotracer activity is smeared by the respiratory motion and averaged during the imaging acquisition process. This motion-induced degradation is similar in magnitude with the treatment-induced changes, and the two occurrences become indiscernible.

View Article and Find Full Text PDF

Anti-1-amino-3-[(18)F] fluorocyclobutane-1-carboxylic acid (anti-3-[(18)F] FACBC) is a synthetic amino acid positron emission tomography (PET) radiotracer with utility in the detection of recurrent prostate carcinoma. The aim of this study is to correlate uptake of anti-3-[(18)F] FACBC with histology of prostatectomy specimens in patients undergoing radical prostatectomy and to determine if uptake correlates to markers of tumor aggressiveness such as Gleason score. Ten patients with prostate carcinoma pre-radical prostatectomy underwent 45 minute dynamic PET-CT of the pelvis after IV injection of 347.

View Article and Find Full Text PDF

Purpose: Imaging biomarkers are crucial in managing treatment options for cancer patients. They are extremely powerful tools since they allow personalized treatment assessment early during therapy by using repeated imaging to detect and quantify tumor response. Currently, treatment response assessment from consecutive imaging is measured by simple global measures that do not capture a tumor's heterogeneous response.

View Article and Find Full Text PDF

Frameless radiosurgery is an attractive alternative to the framed procedure if it can be performed with comparable precision in a reasonable time frame. Here, we present a positioning approach for frameless radiosurgery based on in-room volumetric imaging coupled with an advanced six-degrees-of-freedom (6 DOF) image registration technique which avoids use of a bite block. Patient motion is restricted with a custom thermoplastic mask.

View Article and Find Full Text PDF

Deformable registration has migrated from a research topic to a widely used clinical tool that can improve radiotherapeutic treatment accuracy by tracking anatomical changes. Although various mathematical formulations have been reported in the literature and implemented in commercial software, we lack a straightforward method to verify a given solution in routine clinical use. We propose a metric using concepts derived from vector analysis that complements the standard evaluation tools to identify unrealistic wrappings in a displacement field.

View Article and Find Full Text PDF

The purpose of this study was to develop and validate a technique for unsealed source radiotherapy planning that combines the segmentation and registration tasks of single-photon emission tomography (SPECT) and computed tomography (CT) datasets. The segmentation task is automated by an atlas registration approach that takes advantage of a hybrid scheme using a diffeomorphic demons algorithm to warp a standard template to the patient's CT. To overcome the lack of common anatomical features between the CT and SPECT datasets, registration is achieved through a narrow band approach that matches liver contours in the CT with the gradients of the SPECT dataset.

View Article and Find Full Text PDF

The concept of frailty has been evolving dramatically for the past 30 years. Through its evolution, a variety of single and multidimensional models have been used to describe frailty. This article reviews the current literature related to the defining dimensions of frailty and identifies the gaps in the literature requiring additional research.

View Article and Find Full Text PDF

Radiosurgical treatment of cranial or extracranial targets demands accurate positioning of the isocenter at the beam and table isocenter, and immobilization of the target during treatment. For spinal radiosurgery, the standard approach involves matching of cone-beam CT (CBCT) in-room images with the planning CT (pCT) to determine translation and yaw corrections. The purpose of this study was to assess the accuracy of these techniques compared to advanced automatching using mutual information metrics, with consideration given to volume of interest (VOI) and optimizing translations and rotations in all axes.

View Article and Find Full Text PDF

PET/computed tomography (CT) has been used for both diagnosis/ staging of cancer and guiding the cancer treatment planning process. PET-guided radiotherapy (RT) planning has been increasingly used to assist in determining the tumor locations so that therapy procedures can be focused on the tumor, minimizing damage to the surrounding tissue. However, incorporating PET/CT into the treatment planning process raises challenges in areas of immobilization, image registration, and target volume segmentation.

View Article and Find Full Text PDF

The objective was to evaluate the performance of a high-definition multileaf collimator (MLC) of 2.5 mm leaf width (MLC2.5) and compare to standard 5 mm leaf width MLC (MLC5) for the treatment of intracranial lesions using dynamic conformal arcs (DCA) technique with a dedicated radiosurgery linear accelerator.

View Article and Find Full Text PDF

Purpose: Realization of combined positron emission tomography (PET)--magnetic resonance (MR) scanners has the potential to significantly change healthcare and revolutionize clinical practice as it allows, simultaneously, visualization of molecular imaging and anatomical imaging. PET-MR, acquired in one imaging study, will likely become the advanced imaging modality of choice for neurological studies, certain forms of cancer, stroke, and the emerging study of stem cell therapy. A challenge toward the implementation and operation of combined PET-MR scanners is that attenuation corrections maps are not directly available due to space and cost constraints.

View Article and Find Full Text PDF

Purpose: To evaluate if automatic atlas-based lymph node segmentation (LNS) improves efficiency and decreases inter-observer variability while maintaining accuracy.

Methods And Materials: Five physicians with head-and-neck IMRT experience used computed tomography (CT) data from 5 patients to create bilateral neck clinical target volumes covering specified nodal levels. A second contour set was automatically generated using a commercially available atlas.

View Article and Find Full Text PDF

Volumetric modulated arc therapy (VMAT) is a system for intensity-modulated radiotherapy treatment delivery that achieves high dose conformality by optimizing the dose rate, gantry speed, and the leaf positions of the dynamic multileaf collimator (DMLC). The aim of this work is to present a practical approach for patient-specific volumetric reconstruction of the dose delivered of a VMAT treatment using the DMLC and treatment controller log (Dynalog) files. The accuracy of VMAT delivery was analyzed for five prostate patients.

View Article and Find Full Text PDF