Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with a median survival of 15 months. Despite advancements in conventional treatment approaches such as surgery and chemotherapy, the prognosis remains poor. This study investigates the use of rapid evaporative ionization mass spectrometry (REIMS) for real-time overall survival time classification of GBM samples and uses matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) to compare lipidomic differences within GBM tumors.
View Article and Find Full Text PDFIn recent years, mass spectrometry-based imaging techniques have improved at unprecedented speeds, particularly in spatial resolution, and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) experiments can now routinely image molecular profiles of single cells in an untargeted fashion. With the introduction of MALDI-immunohistochemistry (IHC), multiplexed visualization of targeted proteins in their native tissue location has become accessible and joins the suite of multimodal imaging techniques that help unravel molecular complexities. However, MALDI-IHC has not been validated for use with cell cultures at single-cell level.
View Article and Find Full Text PDFWe introduce a novel approach for comprehensive molecular profiling in biological samples. Our single-section methodology combines quantitative mass spectrometry imaging (Q-MSI) and a single step extraction protocol enabling lipidomic and proteomic liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis on the same tissue area. The integration of spatially correlated lipidomic and proteomic data on a single tissue section allows for a comprehensive interpretation of the molecular landscape.
View Article and Find Full Text PDFCells often adopt different phenotypes, dictated by tissue-specific or local signals such as cell-cell and cell-matrix contacts or molecular micro-environment. This holds in extremis for macrophages with their high phenotypic plasticity. Their broad range of functions, some even opposing, reflects their heterogeneity, and a multitude of subsets has been described in different tissues and diseases.
View Article and Find Full Text PDF