Advances in machine learning (ML) and automated experimentation are poised to vastly accelerate research in polymer science. Data representation is a critical aspect for enabling ML integration in research workflows, yet many data models impose significant rigidity making it difficult to accommodate a broad array of experiment and data types found in polymer science. This inflexibility presents a significant barrier for researchers to leverage their historical data in ML development.
View Article and Find Full Text PDFAliphatic polycarbonates represent an important class of materials with diverse applications ranging from battery electrolytes, polyurethane intermediates, and materials for biomedical applications. These materials can be produced via the ring-opening polymerization (ROP) of six- to eight-membered cyclic carbonates derived from precursor 1,3- and 1,5-diols. These diols can contain a range of functional groups depending on the desired thermal, mechanical, and solution properties.
View Article and Find Full Text PDFA blend of a low-optical-gap diketopyrrolopyrrole polymer and a fullerene derivative, with near-zero driving force for electron transfer, is investigated. Using femtosecond transient absorption and electroabsorption spectroscopy, the charge transfer (CT) and recombination dynamics as well as the early-time transport are quantified. Electron transfer is ultrafast, consistent with a Marcus-Levich-Jortner description.
View Article and Find Full Text PDFWe investigate the conductance of optimized donor-acceptor-donor molecular wires obtained by on-surface synthesis on the Au(111) surface. A careful balance between acceptors and donors is achieved using a diketopyrrolopyrrole acceptor and two thiophene donors per unit along the wire. Scanning tunneling microscopy imaging, spectroscopy, and conductance measurements done by pulling a single molecular wire at one end are presented.
View Article and Find Full Text PDFThe synthesis of a novel naphthalenediimide (NDI)-bithiazole (Tz2)-based polymer [P(NDI2OD-Tz2)] is reported, and structural, thin-film morphological, as well as charge transport and thermoelectric properties are compared to the parent and widely investigated NDI-bithiophene (T2) polymer [P(NDI2OD-T2)]. Since the steric repulsions in Tz2 are far lower than in T2, P(NDI2OD-Tz2) exhibits a more planar and rigid backbone, enhancing π-π chain stacking and intermolecular interactions. In addition, the electron-deficient nature of Tz2 enhances the polymer electron affinity, thus reducing the polymer donor-acceptor character.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2017
Stimuli-responsive hydrogels combine sensor and actuator properties by converting an environmental stimulus into mechanical work. Those materials are highly interesting for applications as a chemomechanical valve in microsystem technologies. However, studies about key characteristics of hydrogels for this application are comparatively rare, and further research is needed to emphasize their real potential.
View Article and Find Full Text PDFNaphthalenediimide-based random copolymers (PNDI-TVTx) with different π-conjugated dithienylvinylene (TVT) versus π-nonconjugated dithienylethane (TET) unit ratios (x = 100→0%) are investigated. The PNDI-TVTx-transistor electron/hole mobilities are affected differently, a result rationalized by molecular orbital topologies and energies, with hole mobility vanishing but electron mobility decreasing only by ≈2.5 times when going from x = 100% to 40%.
View Article and Find Full Text PDF[3]-Radialene-based dopant CN6-CP studied herein, with its reduction potential of +0.8 versus Fc/Fc+ and the lowest unoccupied molecular orbital level of -5.87 eV, is the strongest molecular p-dopant reported in the open literature, so far.
View Article and Find Full Text PDF