Publications by authors named "Tim Dunn"

The indiscriminate administration of broad-spectrum antibiotics is a primary contributor to the increasing prevalence of antibiotic resistance. Unfortunately, culture, the gold standard for bacterial identification is a time intensive process. Due to this extended diagnostic period, broad-spectrum antibiotics are generally prescribed to prevent poor outcomes.

View Article and Find Full Text PDF

In this work, we extend vcfdist to be the first variant call benchmarking tool to jointly evaluate phased single-nucleotide polymorphisms (SNPs), small insertions/deletions (INDELs), and structural variants (SVs) for the whole genome. First, we find that a joint evaluation of small and structural variants uniformly reduces measured errors for SNPs (- 28.9%), INDELs (- 19.

View Article and Find Full Text PDF

Accurately benchmarking small variant calling accuracy is critical for the continued improvement of human whole genome sequencing. In this work, we show that current variant calling evaluations are biased towards certain variant representations and may misrepresent the relative performance of different variant calling pipelines. We propose solutions, first exploring the affine gap parameter design space for complex variant representation and suggesting a standard.

View Article and Find Full Text PDF

Despite recent improvements in nanopore basecalling accuracy, germline variant calling of small insertions and deletions (INDELs) remains poor. Although precision and recall for single nucleotide polymorphisms (SNPs) now exceeds 99.5%, INDEL recall remains below 80% for standard R9.

View Article and Find Full Text PDF

Motivation: As genome sequencing becomes cheaper and more accurate, it is becoming increasingly viable to merge this data with electronic health information to inform clinical decisions.

Results: In this work, we demonstrate a full pipeline for working with both PacBio sequencing data and clinical FHIR data, from initial data to tertiary analysis. The electronic health records are stored in FHIR (Fast Healthcare Interoperability Resource) format, the current leading standard for healthcare data exchange.

View Article and Find Full Text PDF

The mechanical properties of π-conjugated (semiconducting) polymers are a key determinant of the stability and manufacturability of devices envisioned for applications in energy and healthcare. These properties─including modulus, extensibility, toughness, and strength─are influenced by the morphology of the solid film, which depends on the method of processing. To date, the majority of work done on the mechanical properties of semiconducting polymers has been performed on films deposited by spin coating, a process not amenable to the manufacturing of large-area films.

View Article and Find Full Text PDF

In habitat modelling, environmental variables are assumed to be proxies of lower trophic levels distribution and by extension, of marine top predator distributions. More proximal variables, such as potential prey fields, could refine relationships between top predator distributions and their environment. In situ data on prey distributions are not available over large spatial scales but, a numerical model, the Spatial Ecosystem And POpulation DYnamics Model (SEAPODYM), provides simulations of the biomass and production of zooplankton and six functional groups of micronekton at the global scale.

View Article and Find Full Text PDF

Background: Although periodic cardiac stress testing is commonly used to screen patients on the waiting list for kidney transplantation for ischemic heart disease, there is little evidence to support this practice. We hypothesized that cardiac stress testing in the 18 months prior to kidney transplantation would not reduce postoperative death, total myocardial infarction (MI) or fatal MI.

Methods: Using the United States Renal Data System, we identified ESRD patients ≥40 years old with primary Medicare insurance who received their first kidney transplant between 7/1/2006 and 11/31/2013.

View Article and Find Full Text PDF

Although high-temperature operation (i.e., beyond 150°C) is of great interest for many electronics applications, achieving stable carrier mobilities for organic semiconductors at elevated temperatures is fundamentally challenging.

View Article and Find Full Text PDF

Objective: To examine the prevalence of athletes who screen positive with the preparticipation examination guidelines from the American Heart Association, the AHA 12-elements, in combination with 3 screening electrocardiogram (ECG) criteria.

Design: Observational cross-sectional study.

Setting: Stanford University Sports Medicine Clinic.

View Article and Find Full Text PDF

Background: Screening athletes with ECGs is aimed at identifying "at-risk" individuals who may have a cardiac condition predisposing them to sudden cardiac death. The Seattle criteria highlight QRS duration greater than 140 ms and ST segment depression in two or more leads greater than 50 μV as two abnormal ECG patterns associated with sudden cardiac death.

Methods: High school, college, and professional athletes underwent 12 lead ECGs as part of routine pre-participation physicals.

View Article and Find Full Text PDF

The geometric and electronic structure of an oxidized bimetallic Ni complex incorporating two redox-active Schiff-base ligands connected via a 1,2-phenylene linker has been investigated and compared to a monomeric analogue. Information from UV/Vis/NIR spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, electrochemistry, and density functional theory (DFT) calculations provides important information on the locus of oxidation for the bimetallic complex. The neutral bimetallic complex is conformationally dynamic at room temperature, which complicates characterization of the oxidized forms.

View Article and Find Full Text PDF

The electronic structure of a doubly oxidized Ni salen complex NiSal(tBu) (Sal(tBu) = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) has been investigated by both experimental and theoretical methods. The doubly oxidized product was probed by resonance Raman spectroscopy, UV-vis-NIR, and EPR to determine the locus of oxidation as well as the spectroscopic signature of the complex. It was determined that double oxidation of NiSal(tBu) affords a bis-ligand radical species in solution via the presence of phenoxyl radical bands at ν(7a) (1504 cm(-1)) and ν(8a) (1579 cm(-1)) in the Raman spectrum, and the loss of the intense NIR transition reported for the mono-radical complex (Angew.

View Article and Find Full Text PDF

Square-planar nickel(II) complexes of salen ligands, N,N'-bis(3-tert-butyl-(5R)-salicylidene)-1,2-cyclohexanediamine), in which R=tert-butyl (1), OMe (2), and NMe(2) (3), were prepared and the electronic structure of the one-electron-oxidized species [1-3](+·) was investigated in solution. Cyclic voltammograms of [1-3] showed two quasi-reversible redox waves that were assigned to the oxidation of the phenolate moieties to phenoxyl radicals. From the difference between the first and second redox potentials, the trend of electronic delocalization 1(+·) >2(+·) >3(+·) was obtained.

View Article and Find Full Text PDF

The geometric and electronic structure of a bimetallic Cu Schiff-base complex and its one-electron oxidized form have been investigated. The two salen units in the neutral complex 1 are linked via a bridging catecholate function, and the coupling between the two Cu(II) d(9) centres was determined to be weakly antiferromagnetic on the basis of solid-state magnetic studies (J = -3 cm(-1)), and variable-temperature electron paramagnetic resonance (EPR) (J = -3 cm(-1)). Theoretical calculations (DFT) were in agreement with the experimental results (J = -7 cm(-1)), and provided insight into the coupling mechanism for the neutral system.

View Article and Find Full Text PDF

The geometric and electronic structure of a bimetallic Ni Schiff-base complex and its one-electron oxidized form have been investigated in the solid state and in solution. The two salen units in the neutral complex 1 are linked via a bridging catecholate function. The one-electron oxidized form [1](+) was determined to exist as a ligand radical species in solution, with the electron hole potentially localized on the redox-active dioxolene, the phenolate ligands, or delocalized over the entire ligand system.

View Article and Find Full Text PDF

The neutral and one-electron oxidized group 10 metal, Ni(II), Pd(II) and Pt(II), six-membered chelate Salpn (Salpn = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,3-propanediamine) complexes have been investigated and compared to the five-membered chelate Salen (N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-ethanediamine) and Salcn (N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) complexes. Reaction of the Salpn complexes with 1 equivalent of AgSbF(6) affords the oxidized complexes which exist as ligand radical species in solution and in the solid state. The solid state structures of the oxidized complexes have been determined by X-ray crystal structure analysis.

View Article and Find Full Text PDF