Graphene nanoribbons (GNRs) have attracted considerable interest, as their atomically tunable structure makes them promising candidates for future electronic devices. However, obtaining detailed information about the length of GNRs has been challenging and typically relies on low-temperature scanning tunneling microscopy. Such methods are ill-suited for practical device application and characterization.
View Article and Find Full Text PDFOn-surface synthesis is a powerful route toward the fabrication of specific graphene-like nanostructures confined in two dimensions. This strategy has been successfully applied to the growth of graphene nanoribbons of diverse width and edge morphology. Here, we investigate the mechanisms driving the growth of 9-atom wide armchair graphene nanoribbons by using scanning tunneling microscopy, fast X-ray photoelectron spectroscopy, and temperature-programmed desorption techniques.
View Article and Find Full Text PDFBottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.
View Article and Find Full Text PDFThe electronic properties of graphene nanoribbons grown on metal substrates are significantly masked by the ones of the supporting metal surface. Here, we introduce a novel approach to access the frontier states of armchair graphene nanoribbons (AGNRs). The in situ intercalation of Si at the AGNR/Au(111) interface through surface alloying suppresses the strong contribution of the Au(111) surface state and allows for an unambiguous determination of the frontier electronic states of both wide and narrow band gap AGNRs.
View Article and Find Full Text PDFRecent advances in bottom-up synthesis of atomically defined graphene nanoribbons (GNRs) with various microstructures and properties have demonstrated their promise in electronic and optoelectronic devices. Here we synthesized N = 9 armchair graphene nanoribbons (9-AGNRs) with a low optical band gap of ∼1.0 eV and extended absorption into the infrared range by an efficient chemical vapor deposition process.
View Article and Find Full Text PDFThe bottom-up approach to synthesize graphene nanoribbons strives not only to introduce a band gap into the electronic structure of graphene but also to accurately tune its value by designing both the width and edge structure of the ribbons with atomic precision. We report the synthesis of an armchair graphene nanoribbon with a width of nine carbon atoms on Au(111) through surface-assisted aryl-aryl coupling and subsequent cyclodehydrogenation of a properly chosen molecular precursor. By combining high-resolution atomic force microscopy, scanning tunneling microscopy, and Raman spectroscopy, we demonstrate that the atomic structure of the fabricated ribbons is exactly as designed.
View Article and Find Full Text PDFGraphene-based nanostructures exhibit electronic properties that are not present in extended graphene. For example, quantum confinement in carbon nanotubes and armchair graphene nanoribbons leads to the opening of substantial electronic bandgaps that are directly linked to their structural boundary conditions. Nanostructures with zigzag edges are expected to host spin-polarized electronic edge states and can thus serve as key elements for graphene-based spintronics.
View Article and Find Full Text PDFA multistep synthesis of hexa-peri-hexabenzocoronene (HBC) with four additional K-regions was developed through a precursor based on two benzotetraphene units bridged with p-phenylene, featuring preinstalled zigzag moieties. Characterization by laser desorption/ionization time-of-flight mass spectrometry, Raman and IR spectroscopy, and scanning tunneling microscopy unambiguously validated the successful formation of this novel zigzag edge-rich HBC derivative. STM imaging of its monolayers revealed large-area, defect-free adlayers.
View Article and Find Full Text PDF