Publications by authors named "Tim Dudgeon"

Article Synopsis
  • - The COVID Moonshot was a collaborative, open-science effort focused on finding a new drug to inhibit the SARS-CoV-2 main protease, which is crucial for the virus's survival.
  • - Researchers developed a novel noncovalent, nonpeptidic inhibitor that stands out from existing drugs targeting the same protease, employing advanced techniques like machine learning and high-throughput structural biology.
  • - Over 18,000 compound designs, 490 ligand-bound x-ray structures, and extensive assay data were generated and shared openly, creating a comprehensive and accessible knowledge base for future drug discovery efforts against coronaviruses.
View Article and Find Full Text PDF

Fragment merging is a promising approach to progressing fragments directly to on-scale potency: each designed compound incorporates the structural motifs of overlapping fragments in a way that ensures compounds recapitulate multiple high-quality interactions. Searching commercial catalogues provides one useful way to quickly and cheaply identify such merges and circumvents the challenge of synthetic accessibility, provided they can be readily identified. Here, we demonstrate that the Fragment Network, a graph database that provides a novel way to explore the chemical space surrounding fragment hits, is well-suited to this challenge.

View Article and Find Full Text PDF

We present several workflows for protein-ligand docking and free energy calculation for use in the workflow management system Galaxy. The workflows are composed of several widely used open-source tools, including rDock and GROMACS, and can be executed on public infrastructure using either Galaxy's graphical interface or the command line. We demonstrate the utility of the workflows by running a high-throughput virtual screening of around 50000 compounds against the SARS-CoV-2 main protease, a system which has been the subject of intense study in the last year.

View Article and Find Full Text PDF

We have shown that two of the matrix metalloproteinases (MMPs), matrilysin and stromelysin-1, are capable of cleaving all of the human IgG subclasses. The cleavage occurs at a conserved site in the CH(2) domain of the heavy chain of IgG, releasing a single chain Fc-like fragment. We have not been able to demonstrate cleavage of IgA, IgD, IgM or IgE classes, which lack the cleavage site, nor could we show cleavage of IgG by collagenase, gelatinase, macrophage metalloelastase or membrane-type (MT)-MMP.

View Article and Find Full Text PDF