Mid-depth North Pacific waters are rich in nutrients and respired carbon accumulated over centuries. The rates and pathways with which these waters exchange with the surface ocean are uncertain, with divergent paradigms of the Pacific overturning: one envisions bottom waters upwelling to 1.5 km depth; the other confines overturning beneath a mid-depth Pacific shadow zone (PSZ) shielded from mean advection.
View Article and Find Full Text PDFMeasurements show large decadal variability in the rate of [Formula: see text] accumulation in the atmosphere that is not driven by [Formula: see text] emissions. The decade of the 1990s experienced enhanced carbon accumulation in the atmosphere relative to emissions, while in the 2000s, the atmospheric growth rate slowed, even though emissions grew rapidly. These variations are driven by natural sources and sinks of [Formula: see text] due to the ocean and the terrestrial biosphere.
View Article and Find Full Text PDFZinc (Zn) is a key micronutrient for marine phytoplankton, with a global distribution that is similar to silicic acid. The processes that govern this relationship, despite the very different biological cycling of Zn and silica, remain poorly understood. Here, we use diagnostic and mechanistic models to show that only a combination of Southern Ocean biological uptake and reversible scavenging of Zn onto sinking particles can explain the observations.
View Article and Find Full Text PDFThe ocean is the largest sink for anthropogenic carbon dioxide (CO), having absorbed roughly 40 per cent of CO emissions since the beginning of the industrial era. Recent data show that oceanic CO uptake rates have been growing over the past decade, reversing a trend of stagnant or declining carbon uptake during the 1990s. Here we show that ocean circulation variability is the primary driver of these changes in oceanic CO uptake over the past several decades.
View Article and Find Full Text PDFSurface westerly winds in the Southern Hemisphere have intensified over the past few decades, primarily in response to the formation of the Antarctic ozone hole, and there is intense debate on the impact of this on the ocean's circulation and uptake and redistribution of atmospheric gases. We used measurements of chlorofluorocarbon-12 (CFC-12) made in the southern oceans in the early 1990s and mid- to late 2000s to examine changes in ocean ventilation. Our analysis of the CFC-12 data reveals a decrease in the age of subtropical subantarctic mode waters and an increase in the age of circumpolar deep waters, suggesting that the formation of the Antarctic ozone hole has caused large-scale coherent changes in the ventilation of the southern oceans.
View Article and Find Full Text PDFA substituted anthraquinone (AQ), previously shown to photochemically generate benzaldehyde in methanol solution, was attached to a commercially available resin via an 11 carbon tether and an amide bond. Photolysis of the polymer-bound AQ with visible or 350 nm UV light resulted in the formation of benzaldehyde in yields of 50-55% as determined by HPLC. The phenolic positions in the polymer were then alkylated using benzyl bromide and 1-iodo-3-(4-nitrophenyl)propane in a coupling reaction with K(2)CO(3) as a base and a solution-phase proton shuttle.
View Article and Find Full Text PDF