A novel method is demonstrated to encapsulate titanium dioxide pigment using directed polymerization-induced self-assembly (PISA) with reversible addition-fragmentation chain-transfer (RAFT) controlled emulsion polymerization. The polymerization is carried out in a batch process in which both styrene (Sty) and the pigment are emulsified using triblock amphiphilic macro-RAFT copolymers as stabilizers. RAFT-controlled chain growth leads to directed lamellar self-assembly, forming polystyrene (PS) shells' encapsulating pigment particles with 100% efficiency.
View Article and Find Full Text PDFRAFT-mediated free-radical emulsion polymerization is successfully used to synthesize polystyrene nanofibers using triblock amphiphilic macro-RAFT copolymers as stabilizers. The polymerization is under RAFT control, producing various morphologies from spherical particles, nanofibers, nanoplatelets, and polymer vesicles. Optimum conditions are established for the synthesis of predominantly negatively charged polymer nanofibers.
View Article and Find Full Text PDFHypothesis: Film-forming polymer latex particles of diameter <300 nm can be prepared in the complete absence of surfactants, stabilised in part by silica nanoparticles through a Pickering type emulsion polymerisation. Control of the silica wettability through modulation of reaction pH or by reaction of the nanoparticles with a hydrophobic silane results in silica-covered latex particles.
Experiments: The oil-in-water polymerisation process used methyl methacrylate (MMA) and n-butyl acrylate (BA) as co-monomers, potassium persulphate (KPS) as an initiator and a commercially available colloidal nano-silica (Ludox®-TM40).
A robust polymerization technique that enables the surfactant-free aqueous synthesis of a high solid content latex containing polymeric hollow particles is presented. Uniquely designed amphiphilic macro-reversible addition fragmentation chain transfer (RAFT) copolymers were used as sole stabilizers for monomer emulsification as well as for free-radical emulsion polymerization. The polymerization was found to be under RAFT control, generating various morphologies from spherical particles, wormlike structures to polymer vesicles.
View Article and Find Full Text PDFThe size and shape of micelles formed by dimeric polyoxyethylene (nonionic gemini) surfactants having the structure (Cn-2H2n-3CHCH2(OCH2CH2)mOH)2(CH2)6 with alkyl and ethoxy chain lengths ranging from n = 12-20 and m = 5-30 have been determined using small angle neutron scattering (SANS). The surfactants are polydisperse in the hydrophilic groups but otherwise analogous to the widely studied monomeric poly(oxyethylene) alkanols. We find that longer ethoxylated chains are needed to confer solubility on the gemini surfactants and that these chains in the hydrophilic corona around the alkyl core of the micelles are reasonably well described as a homogeneous random coil in a good solvent.
View Article and Find Full Text PDFJ Colloid Interface Sci
July 2004
Dimeric poly(ethylene oxide) surfactants (or nonionic gemini surfactants) with the structure (Cn-2H2n-3CHCH2O(CH2CH2O)mH)2(CH2)6 (or GemnEm), where n is the alkyl length and m is the average number of ethylene oxides per head group, were synthesized. Surfactants were synthesized with alkyl chain lengths n = 12, 14, and 20 and m = 5, 10, 15, 20, and 30. Water solubilities and cloud temperatures at 1 wt% were determined by measuring turbidity as a function of temperature.
View Article and Find Full Text PDF