Publications by authors named "Tim Dale"

Aminopeptidase N (APN) has been reported to have a functional role in tumor angiogenesis and repeatedly reported to be over-expressed in human tumors. The melphalan-derived prodrug melphalan-flufenamide (melflufen, previously designated J1) can be activated by APN. This suggests that this alkylating prodrug may exert anti-angiogenic properties, which will possibly contribute to the anti-tumoral activity in vivo.

View Article and Find Full Text PDF

Reaction of [Pd(PPh(3))(4)] with 1,1-dichloro-2,3-diarylcyclopropenes gives complexes of the type cis-[PdCl(2)(PPh(3))(C(3)(Ar)(2))] (Ar = Ph 5, Mes 6). Reaction of [Pd(dba)(2)] with 1,1-dichloro-2,3-diarylcyclopropenes in benzene gave the corresponding binuclear palladium complexes trans-[PdCl(2)(C(3)(Ar)(2))](2) (Ar = Ph 7, p-(OMe)C(6)H(4)8, p-(F)C(6)H(4)9). Alternatively, when the reactions were performed in acetonitrile, the complexes trans-[PdCl(2)(NCMe)(C(3)(Ar)(2))] (Ar = Ph 10, p-(OMe)C(6)H(4)11 and p-(F)C(6)H(4)) 12) were isolated.

View Article and Find Full Text PDF

Gamma-amino butyric acid (GABA)-activated Cl- channels are critical mediators of inhibitory postsynaptic potentials in the CNS. To date, rational design efforts to identify potent and selective GABA(A) subtype ligands have been hampered by the absence of suitable high-throughput screening approaches. The authors describe 384-well population patch-clamp (PPC) planar array electrophysiology methods for the study of GABA(A) receptor pharmacology.

View Article and Find Full Text PDF

A new small molecule, 4-(2-methoxy-phenylcarbamoyloxymethyl)-piperidine-1-carboxylic acid tert-butyl ester (GW542573X), is presented as an activator of small-conductance Ca(2+)-activated K(+) (SK, K(Ca)2) channels and distinguished from previously published positive modulators of SK channels, such as 1-ethyl-2-benzimidazolinone (1-EBIO) and cyclohexyl-[2-(3,5-dimethylpyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA), in several aspects. GW542573X is the first SK1-selective compound described: an EC(50) value of 8.2 +/- 0.

View Article and Find Full Text PDF

Population patch clamp (PPC) is a novel high throughput planar array electrophysiology technique that allows ionic currents to be recorded from populations of cells under voltage clamp. For the drug discovery pharmacologist, PPC promises greater speed and precision than existing methods for screening compounds at voltage-gated ion channel targets. Moreover, certain constitutively active or slow-ligand gated channels that have hitherto proved challenging to screen with planar array electrophysiology (e.

View Article and Find Full Text PDF

Planar array electrophysiology techniques were applied to assays for modulators of recombinant hIK and hSK3 Ca2+-activated K+ channels. In CHO-hIK-expressing cells, under asymmetric K+ gradients, small-molecule channel activators evoked time- and voltage-independent currents characteristic of those previously described by classical patch clamp electrophysiology methods. In single-hole (cell) experiments, the large cell-to-cell heterogeneity in channel expression rendered it difficult to generate activator concentration-response curves.

View Article and Find Full Text PDF

In this work molecular modeling was applied to generate homology models of the pore region of the Na(v)1.2 and Na(v)1.8 isoforms of human voltage-gated sodium channels.

View Article and Find Full Text PDF

The role of calcium-activated potassium channels in the regulation of neuronal hyperexcitability, as in epilepsy, is unclear. To examine this issue, we have used the acute hippocampal slice model of epileptiform activity to investigate the effects of an enhancer of SK channel activity, 1-ethyl-benzimidazolinone (EBIO). That EBIO is an SK channel modulator was confirmed by its potentiation of hSK1, hSK2, hSK3 and hIK currents (EC(50) values in the range of 130-870 microM) and its apamin (1 microM) sensitive reduction of the number of action potentials fired in CA3 pyramidal neurons in response to a depolarizing current step.

View Article and Find Full Text PDF