J Mol Histol
February 2008
Although the presence of neurotrophin p75 receptor on sympathetic nerves is a well-recognised feature, there is still a scarcity of details of the distribution of the receptor on cerebrovascular nerves. This study examined the distribution of p75 receptor on perivascular sympathetic nerves of the middle cerebral artery and the basilar artery of healthy young rats using immunohistochemical methods at the laser confocal microscope and transmission electron microscope levels. Immunofluorescence methods of detection of tyrosine hydroxylase (TH) in sympathetic nerves, p75 receptor associated with the nerves, and also S-100 protein in Schwann cells were applied in conjunction with confocal microscopy, while the pre-embedding single and double immunolabelling methods (ExtrAvidin and immuno-gold-silver) were applied for the electron microscopic examination.
View Article and Find Full Text PDFThis study aimed to examine the expression and function of P2 receptors of the rat tail and mesenteric arteries during maturation and ageing (4, 6 and 12 weeks, 8 and 24 months). Functional studies and receptor expression by immunohistochemistry revealed a heterogeneous phenotype of P2 receptor subtypes depending on artery age. The purinergic component of nerve-mediated responses in the tail artery was greater in younger animals; similarly responses to ATP and alpha,beta-meATP and the expression of P2X1 receptors decreased with age.
View Article and Find Full Text PDFAn open issue in research on ageing is the extent to which responses to the environment during development can influence variability in life span in animals, and the health profile of the elderly in human populations. Both affluence and adversity in human societies have profound impacts on survivorship curves, and some of this effect may be traceable to effects in utero or in infancy. The Barker Hypothesis that links caloric restriction in very early life to disruptions of glucose-insulin metabolism in later life has attracted much attention, as well as some controversy, in medical circles.
View Article and Find Full Text PDFWe have examined the hypothesis that differences in nerve growth factor (NGF) uptake and transport determine vulnerability to age-related neurodegeneration. Neurons projecting to cerebral blood vessels (CV) in aged rats are more vulnerable to age-related degeneration than those projecting to the iris. Uptake of NGF was therefore examined in sympathetic neurons projecting from the superior cervical ganglion (SCG) to CV and iris in young and old rats by treating the peripheral processes of these neurons with different doses of I125-NGF.
View Article and Find Full Text PDF