The recent COVID-19 pandemic has thrown the importance of accurately forecasting contagion dynamics and learning infection parameters into sharp focus. At the same time, effective policy-making requires knowledge of the uncertainty on such predictions, in order, for instance, to be able to ready hospitals and intensive care units for a worst-case scenario without needlessly wasting resources. In this work, we apply a novel and powerful computational method to the problem of learning probability densities on contagion parameters and providing uncertainty quantification for pandemic projections.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2024
In response to increasing data privacy regulations, this work examines the use of federated learning for deep residual networks to diagnose cardiac abnormalities from electrocardiogram (ECG) data. This approach allows medical institutions to collaborate without exchanging raw patient data. We utilize the publicly available data from the PhysioNet/Computing in Cardiology Challenge 2021, featuring diverse ECG databases, to compare the classification performance of three federated learning methods against both central training with data sharing and isolated training scenarios.
View Article and Find Full Text PDFThe sharing and citation of research data is becoming increasingly recognized as an essential building block in scientific research across various fields and disciplines. Sharing research data allows other researchers to reproduce results, replicate findings, and build on them. Ultimately, this will foster faster cycles in knowledge generation.
View Article and Find Full Text PDFRespiratory viral infections (RVIs) are common reasons for healthcare consultations. The inpatient management of RVIs consumes significant resources. From 2009 to 2014, we assessed the costs of RVI management in 4776 hospitalized children aged 0-18 years participating in a quality improvement program, where all ILI patients underwent virologic testing at the National Reference Centre followed by detailed recording of their clinical course.
View Article and Find Full Text PDFBackground: Collaborative comparisons and combinations of epidemic models are used as policy-relevant evidence during epidemic outbreaks. In the process of collecting multiple model projections, such collaborations may gain or lose relevant information. Typically, modellers contribute a probabilistic summary at each time-step.
View Article and Find Full Text PDFAdv Respir Med
January 2024
Nirmatrelvir/Ritonavir is an oral treatment for mild to moderate COVID-19 cases with a high risk for a severe course of the disease. For this paper, a comprehensive literature review was performed, leading to a summary of currently available data on Nirmatrelvir/Ritonavir's ability to reduce the risk of progressing to a severe disease state. Herein, the focus lies on publications that include comparisons between patients receiving Nirmatrelvir/Ritonavir and a control group.
View Article and Find Full Text PDFMeasurable levels of immunoglobulin G antibodies develop after infections with and vaccinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These antibody levels are dynamic: due to waning, antibody levels will drop over time. During the COVID-19 pandemic, multiple models predicting infection dynamics were used by policymakers to support the planning of public health policies.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
June 2023
The aim of Network Alignment in Protein-Protein Interaction Networks is discovering functionally similar regions between compared organisms. One major compromise for solving a network alignment problem is the trade-off among multiple similarity objectives while applying an alignment strategy. An alignment may lose its biological relevance while favoring certain objectives upon others due to the actual relevance of unfavored objectives.
View Article and Find Full Text PDFLarge-scale perturbations in the microbiome constitution are strongly correlated, whether as a driver or a consequence, with the health and functioning of human physiology. However, understanding the difference in the microbiome profiles of healthy and ill individuals can be complicated due to the large number of complex interactions among microbes. We propose to model these interactions as a time-evolving graph where nodes represent microbes and edges are interactions among them.
View Article and Find Full Text PDFTo improve the identification and management of viral respiratory infections, we established a clinical and virologic surveillance program for pediatric patients fulfilling pre-defined case criteria of influenza-like illness and viral respiratory infections. The program resulted in a cohort comprising 6,073 patients (56% male, median age 1.6 years, range 0-18.
View Article and Find Full Text PDFBMC Genomics
January 2022
Background: Pseudotime estimation from dynamic single-cell transcriptomic data enables characterisation and understanding of the underlying processes, for example developmental processes. Various pseudotime estimation methods have been proposed during the last years. Typically, these methods start with a dimension reduction step because the low-dimensional representation is usually easier to analyse.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
April 2023
Analyzing mass spectrometry-based proteomics data with deep learning (DL) approaches poses several challenges due to the high dimensionality, low sample size, and high level of noise. Additionally, DL-based workflows are often hindered to be integrated into medical settings due to the lack of interpretable explanation. We present DLearnMS, a DL biomarker detection framework, to address these challenges on proteomics instances of liquid chromatography-mass spectrometry (LC-MS) - a well-established tool for quantifying complex protein mixtures.
View Article and Find Full Text PDFThe Covid-19 disease has caused a world-wide pandemic with more than 60 million positive cases and more than 1.4 million deaths by the end of November 2020. As long as effective medical treatment and vaccination are not available, non-pharmaceutical interventions such as social distancing, self-isolation and quarantine as well as far-reaching shutdowns of economic activity and public life are the only available strategies to prevent the virus from spreading.
View Article and Find Full Text PDFMitochondrial function declines during brain aging and is suspected to play a key role in age-induced cognitive decline and neurodegeneration. Supplementing levels of spermidine, a body-endogenous metabolite, has been shown to promote mitochondrial respiration and delay aspects of brain aging. Spermidine serves as the amino-butyl group donor for the synthesis of hypusine (N-[4-amino-2-hydroxybutyl]-lysine) at a specific lysine residue of the eukaryotic translation initiation factor 5A (eIF5A).
View Article and Find Full Text PDFRemote monitoring devices, which can be worn or implanted, have enabled a more effective healthcare for patients with periodic heart arrhythmia due to their ability to constantly monitor heart activity. However, these devices record considerable amounts of electrocardiogram (ECG) data that needs to be interpreted by physicians. Therefore, there is a growing need to develop reliable methods for automatic ECG interpretation to assist the physicians.
View Article and Find Full Text PDFPhage display biopanning with Illumina next-generation sequencing (NGS) is applied to reveal insights into peptide-based adhesion domains for polypropylene (PP). One biopanning round followed by NGS selects robust PP-binding peptides that are not evident by Sanger sequencing. NGS provides a significant statistical base that enables motif analysis, statistics on positional residue depletion/enrichment, and data analysis to suppress false-positive sequences from amplification bias.
View Article and Find Full Text PDFOne of the most widely recognized features of biological systems is their modularity. The modules that constitute biological systems are said to be redeployed and combined across several conditions, thus acting as building blocks. In this work, we analyse to what extent are these building blocks reusable as compared with those found in randomized versions of a system.
View Article and Find Full Text PDFVarious feature selection algorithms have been proposed to identify cancer prognostic biomarkers. In recent years, however, their reproducibility is criticized. The performance of feature selection algorithms is shown to be affected by the datasets, underlying networks and evaluation metrics.
View Article and Find Full Text PDFStudies have shown that the predictive value of "clinical diagnoses" of influenza and other respiratory viral infections is low, especially in children. In routine care, pediatricians often resort to clinical diagnoses, even in the absence of robust evidence-based criteria. We used a dual approach to identify clinical characteristics that may help to differentiate infections with common pathogens including influenza, respiratory syncytial virus, adenovirus, metapneumovirus, rhinovirus, bocavirus-1, coronaviruses, or parainfluenza virus: (a) systematic review and meta-analysis of 47 clinical studies published in Medline (June 1996 to March 2017, PROSPERO registration number: CRD42017059557) comprising 49 858 individuals and (b) data-driven analysis of an inception cohort of 6073 children with ILI (aged 0-18 years, 56% male, December 2009 to March 2015) examined at the point of care in addition to blinded PCR testing.
View Article and Find Full Text PDFExpert Rev Anti Infect Ther
June 2017
Influenza-Like Illness is a leading cause of hospitalization in children. Disease burden due to influenza and other respiratory viral infections is reported on a population level, but clinical scores measuring individual changes in disease severity are urgently needed. Areas covered: We present a composite clinical score allowing individual patient data analyses of disease severity based on systematic literature review and WHO-criteria for uncomplicated and complicated disease.
View Article and Find Full Text PDFBackground: High-throughput proteomics techniques, such as mass spectrometry (MS)-based approaches, produce very high-dimensional data-sets. In a clinical setting one is often interested in how mass spectra differ between patients of different classes, for example spectra from healthy patients vs. spectra from patients having a particular disease.
View Article and Find Full Text PDFParents are often uncertain about the vaccination status of their children. In times of vaccine hesitancy, vaccination programs could benefit from active patient participation. The Vaccination App () was developed by the Vienna Vaccine Safety Initiative, enabling parents to learn about the vaccination status of their children, including 25 different routine, special indication and travel vaccines listed in the WHO Immunization Certificate of Vaccination (WHO-ICV).
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a group of single-stranded RNAs in closed circular form. They are splicing-generated, widely expressed in various tissues and have functional implications in development and diseases. To facilitate genome-wide characterization of circRNAs using RNA-Seq data, we present a freely available software package named acfs.
View Article and Find Full Text PDFIntroduction And Objective: Regulatory authorities often receive poorly structured safety reports requiring considerable effort to investigate potential adverse events post hoc. Automated question-and-answer systems may help to improve the overall quality of safety information transmitted to pharmacovigilance agencies. This paper explores the use of the VACC-Tool (ViVI Automated Case Classification Tool) 2.
View Article and Find Full Text PDFInfectious and inflammatory diseases of the central nervous system are difficult to identify early. Case definitions for aseptic meningitis, encephalitis, myelitis, and acute disseminated encephalomyelitis (ADEM) are available, but rarely put to use. The VACC-Tool (Vienna Vaccine Safety Initiative Automated Case Classification-Tool) is a mobile application enabling immediate case ascertainment based on consensus criteria at the point-of-care.
View Article and Find Full Text PDF