We consider the problem of filtering dynamical systems, possibly stochastic, using observations of statistics. Thus, the computational task is to estimate a time-evolving density ρ(v,t) given noisy observations of the true density ρ†; this contrasts with the standard filtering problem based on observations of the state v. The task is naturally formulated as an infinite-dimensional filtering problem in the space of densities ρ.
View Article and Find Full Text PDFThis editorial's goals are (1) to highlight a few key developments in supersonic jet and launch vehicle noise research over the past several decades while describing some of the critical modern requirements facing government and industry organizations and (2) to summarize the contributions of the articles in this Supersonic Jet Noise special issue in the context of these developments and requirements.
View Article and Find Full Text PDFIn clinical trial NCT03873259, a 2.6-mm lower pole stone was treated transcutaneously and with 390-kHz burst wave lithotripsy (BWL) for 40 minutes and failed to break. The stone was subsequently fragmented with 650-kHz BWL after a 4-minute exposure.
View Article and Find Full Text PDFParabolized stability equations (PSE) have been shown to model wavepackets and, consequently, the near-field of turbulent jets with reasonable accuracy. In this work, PSE were employed to obtain a reduced-order model that could estimate both the fluid-dynamic and the acoustic fields of a supersonic jet in a computationally efficient approximation for resolvent-based estimation based on a single input. From the unsteady pressure data at an input position, the time-domain pressure field was estimated using transfer functions obtained using PSE and a data-driven method based on a well-validated large-eddy simulation (LES).
View Article and Find Full Text PDFResolvent analysis has demonstrated encouraging results for modeling coherent structures in jets when compared against their data-educed counterparts from high-fidelity large-eddy simulations (LES). We formulate resolvent analysis as an acoustic analogy that relates the near-field resolvent forcing to the near- and far-field pressure. We use an LES database of round, isothermal, Mach 0.
View Article and Find Full Text PDFMFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible flows. It is capable of efficiently solving a wide range of flows, including droplet atomization, shock-bubble interaction, and bubble dynamics. We present the 5- and 6-equation thermodynamically-consistent diffuse-interface models we use to handle such flows, which are coupled to high-order interface-capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are capable of simulating unsteady flows with strong shocks.
View Article and Find Full Text PDFViscoelastic material properties at high strain rates are needed to model many biological and medical systems. Bubble cavitation can induce such strain rates, and the resulting bubble dynamics are sensitive to the material properties. Thus, in principle, these properties can be inferred via measurements of the bubble dynamics.
View Article and Find Full Text PDFCharacterization of soft materials is challenging due to their high compliance and the strain-rate dependence of their mechanical properties. The inertial microcavitation-based high strain-rate rheometry (IMR) method [Estrada et al., J.
View Article and Find Full Text PDFHumpback whales can generate intricate bubbly regions, called bubble nets, via blowholes. Humpback whales appear to exploit these bubble nets for feeding via loud vocalizations. A fully-coupled phase-averaging approach is used to model the flow, bubble dynamics, and corresponding acoustics.
View Article and Find Full Text PDFThe dynamics of bubble clouds induced by high-intensity focused ultrasound are investigated in a regime where the cloud size is similar to the ultrasound wavelength. High-speed images show that the cloud is asymmetrical; the bubbles nearest the source grow to a larger radius than the distal ones. Similar structures of bubble clouds are observed in numerical simulations that mimic the laboratory experiment.
View Article and Find Full Text PDFUltra-high-speed video microscopy and numerical modeling were used to assess the dynamics of microbubbles at the surface of urinary stones. Lipid-shell microbubbles designed to accumulate on stone surfaces were driven by bursts of ultrasound in the sub-MHz range with pressure amplitudes on the order of 1 MPa. Microbubbles were observed to undergo repeated cycles of expansion and violent collapse.
View Article and Find Full Text PDFExperimental observations of the growth and collapse of acoustically and laser-nucleated single bubbles in water and agarose gels of varying stiffness are presented. The maximum radii of generated bubbles decreased as the stiffness of the media increased for both nucleation modalities, but the maximum radii of laser-nucleated bubbles decreased more rapidly than acoustically nucleated bubbles as the gel stiffness increased. For water and low stiffness gels, the collapse times were well predicted by a Rayleigh cavity, but bubbles collapsed faster than predicted in the higher stiffness gels.
View Article and Find Full Text PDFWe present a coupled Eulerian-Lagrangian method to simulate cloud cavitation in a compressible liquid. The method is designed to capture the strong, volumetric oscillations of each bubble and the bubble-scattered acoustics. The dynamics of the bubbly mixture is formulated using volume-averaged equations of motion.
View Article and Find Full Text PDFCombined laboratory experiment and numerical simulation are conducted on bubble clouds nucleated on the surface of a model kidney stone to quantify the energy shielding of the stone caused by cavitation during burst wave lithotripsy (BWL). In the experiment, the bubble clouds are visualized and bubble-scattered acoustics are measured. In the simulation, a compressible, multi-component flow solver is used to capture complex interactions among cavitation bubbles, the stone, and the burst wave.
View Article and Find Full Text PDFModeling and numerical simulation of bubble clouds induced by intense ultrasound waves are conducted to quantify the effect of cloud cavitation on burst wave lithotripsy, a proposed non-invasive alternative to shock wave lithotripsy that uses pulses of ultrasound with an amplitude of O(1) MPa and a frequency of O(100) kHz. A unidirectional acoustic source model and an Eulerian-Lagrangian method are developed for simulation of ultrasound generation from a multi-element array transducer and cavitation bubbles, respectively. Parametric simulations of the spherical bubble cloud dynamics reveal a new scaling parameter that dictates both the structure of the bubble cloud and the amplitude of the far-field, bubble-scattered acoustics.
View Article and Find Full Text PDFWe derive a volumetric source term for the Euler and Navier-Stokes equations that mimics the generation of unidirectional acoustic waves from an arbitrary smooth surface in three-dimensional space. The model is constructed as a linear combination of monopole and dipole sources in the mass, momentum, and energy equations. The singular source distribution on the surface is regularized on a computational grid by convolution with a smeared Dirac delta function.
View Article and Find Full Text PDFA novel treatment modality incorporating calcium-adhering microbubbles has recently entered human clinical trials as a new minimally-invasive approach to treat urinary stones. In this treatment method, lipid-shell gas-core microbubbles can be introduced into the urinary tract through a catheter. Lipid moities with calcium-adherance properties incorporated into the lipid shell facilitate binding to stones.
View Article and Find Full Text PDFA combined modeling and experimental study of acoustic cavitation bubbles that are initiated by focused ultrasound waves is reported. Focused ultrasound waves of frequency 335 kHz and peak negative pressure 8 MPa are generated in a water tank by a piezoelectric transducer to initiate cavitation. The resulting pressure field is obtained by direct numerical simulation (DNS) and used to simulate single bubble oscillation.
View Article and Find Full Text PDFWe consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators.
View Article and Find Full Text PDFWe develop a shock- and interface-capturing numerical method that is suitable for the simulation of multicomponent flows governed by the compressible Navier-Stokes equations. The numerical method is high-order accurate in smooth regions of the flow, discretely conserves the mass of each component, as well as the total momentum and energy, and is oscillation-free, it does not introduce spurious oscillations at the locations of shockwaves and/or material interfaces. The method is of Godunov-type and utilizes a fifth-order, finite-volume, weighted essentially non-oscillatory (WENO) scheme for the spatial reconstruction and a Harten-Lax-van Leer contact (HLLC) approximate Riemann solver to upwind the fluxes.
View Article and Find Full Text PDFShockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
April 2011
We review and expand on the control of separated flows over flat plates and aerofoils at low Reynolds numbers associated with micro air vehicles. Experimental observations of the steady-state and transient lift response to actuation, and its dependence on the actuator, aerofoil geometry and flow conditions, are discussed and an attempt is made to unify them in terms of their excitation of periodic and transient vortex shedding. We also examine strategies for closed-loop flow and flight control using actuation of leading-edge vortices.
View Article and Find Full Text PDFWe report on recent efforts to develop predictive models for the pressure and other flow variables in the focal region of shock wave lithotripters. Baseline simulations of three representative lithotripters (electrohydraulic, electromagnetic, and piezoelectric) compare favorably with in vitro experiments (in a water bath). We proceed to model and investigate how shock focusing is altered by the presence of material interfaces associated with different types of tissue encountered along the shock path, and by the presence of cavitation bubbles that are excited by tensile pressures associated with the focused shock wave.
View Article and Find Full Text PDFA high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2009
The theory of the acoustics of dilute bubbly liquids is reviewed, and the dispersion relation is modified by including the effect of liquid compressibility on the natural frequency of the bubbles. The modified theory is shown to more accurately predict the trend in measured attenuation of ultrasonic waves. The model limitations associated with such high-frequency waves are discussed.
View Article and Find Full Text PDF