Publications by authors named "Tim Clausen"

Myosin motors are critical for diverse motility functions, ranging from cytokinesis and endocytosis to muscle contraction. The UNC-45 chaperone controls myosin function mediating the folding, assembly, and degradation of the muscle protein. Here, we analyze the molecular mechanism of UNC-45 as a hub in myosin quality control.

View Article and Find Full Text PDF
Article Synopsis
  • Loss-of-function mutations in the HTRA1 protein lead to cerebral vasculopathy, a condition that affects brain blood vessels.
  • The study identifies an HTRA1 variant that effectively corrects trimer assembly defects, restoring its enzymatic function, as well as a peptidic ligand that activates HTRA1 monomers.
  • Findings suggest potential strategies for targeted protein repair, offering hope for therapeutic approaches to conditions related to HTRA1 mutations.
View Article and Find Full Text PDF

PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation.

View Article and Find Full Text PDF

Antimicrobial resistance is a global health threat that requires the development of new treatment concepts. These should not only overcome existing resistance but be designed to slow down the emergence of new resistance mechanisms. Targeted protein degradation, whereby a drug redirects cellular proteolytic machinery towards degrading a specific target, is an emerging concept in drug discovery.

View Article and Find Full Text PDF

The ClpC1:ClpP1P2 protease is a core component of the proteostasis system in mycobacteria. To improve the efficacy of antitubercular agents targeting the Clp protease, we characterized the mechanism of the antibiotics cyclomarin A and ecumicin. Quantitative proteomics revealed that the antibiotics cause massive proteome imbalances, including upregulation of two unannotated yet conserved stress response factors, ClpC2 and ClpC3.

View Article and Find Full Text PDF

Tristetraprolin (TTP) is a critical negative immune regulator. It binds AU-rich elements in the untranslated-regions of many mRNAs encoding pro-inflammatory mediators, thereby accelerating their decay. A key but poorly understood mechanism of TTP regulation is its timely proteolytic removal: TTP is degraded by the proteasome through yet unidentified phosphorylation-controlled drivers.

View Article and Find Full Text PDF

UFMylation involves the covalent modification of substrate proteins with UFM1 (Ubiquitin-fold modifier 1) and is important for maintaining ER homeostasis. Stalled translation triggers the UFMylation of ER-bound ribosomes and activates C53-mediated autophagy to clear toxic polypeptides. C53 contains noncanonical shuffled ATG8-interacting motifs (sAIMs) that are essential for ATG8 interaction and autophagy initiation.

View Article and Find Full Text PDF

Inhibitor of apoptosis proteins (IAPs) bind to pro-apoptotic proteases, keeping them inactive and preventing cell death. The atypical ubiquitin ligase BIRC6 is the only essential IAP, additionally functioning as a suppressor of autophagy. We performed a structure-function analysis of BIRC6 in complex with caspase-9, HTRA2, SMAC, and LC3B, which are critical apoptosis and autophagy proteins.

View Article and Find Full Text PDF
Article Synopsis
  • * The study introduces BacPROTACs, small-molecule degraders that efficiently target the ClpC:ClpP protease complex to initiate the degradation of specific microbial proteins.
  • * These BacPROTACs not only activate ClpC but also demonstrate effective in vivo activity against mycobacteria, paving the way for antibiotic discovery and providing a versatile tool for studying bacterial protein degradation.
View Article and Find Full Text PDF

Moyamoya disease is a rare cause of stroke, radiologically characterised by progressive stenosis of the terminal portion of the internal carotid arteries and compensatory capillary collaterals. The discovery that RNF213, which encodes an unconventional E3 ubiquitin ligase, is the major susceptibility gene for moyamoya disease in people from east Asia has opened new avenues for investigation into the mechanisms of disease and potential treatment targets. The Arg4810Lys variant of the gene is most strongly associated with moyamoya disease, but the penetrance is lower than 1%, suggesting a synergistic relationship with additional environmental and genetic risk factors.

View Article and Find Full Text PDF

SignificanceClassic serine proteases are synthesized as inactive precursors that are proteolytically processed, resulting in irreversible activation. We report an alternative and reversible mechanism of activation that is executed by an inactive protease. This mechanism involves a protein complex between the serine protease HTRA1 and the cysteine protease calpain 2.

View Article and Find Full Text PDF

Ohmyungsamycin A and ecumicin are structurally related cyclic depsipeptide natural products that possess activity against (Mtb), the causative agent of tuberculosis (TB). Herein, we describe the design and synthesis of a library of analogues of these two natural products using an efficient solid-phase synthesis and late-stage macrolactamization strategy. Lead analogues possessed potent activity against Mtb in vitro (minimum inhibitory concentration 125-500 nM) and were shown to inhibit protein degradation by the mycobacterial ClpC1-ClpP1P2 protease with an associated enhancement of ClpC1 ATPase activity.

View Article and Find Full Text PDF

Targeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome-lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms.

View Article and Find Full Text PDF

For safe operation of active space crafts, the space debris population needs to be continuously scanned, to avoid collisions of active satellites with space debris. Especially the low Earth orbit (LEO) shows higher risks of collisions due to the highest density of orbital debris. Laser ranging stations can deliver highly accurate distance measurements of debris objects allowing precise orbit determination and more effective collision avoidance.

View Article and Find Full Text PDF

In Gram-positive bacteria, the McsB protein arginine kinase is central to protein quality control, labeling aberrant molecules for degradation by the ClpCP protease. Despite its importance for stress response and pathogenicity, it is still elusive how the bacterial degradation labeling is regulated. Here, we delineate the mechanism how McsB targets aberrant proteins during stress conditions.

View Article and Find Full Text PDF

HUWE1 is a universal quality-control E3 ligase that marks diverse client proteins for proteasomal degradation. Although the giant HECT enzyme is an essential component of the ubiquitin-proteasome system closely linked with severe human diseases, its molecular mechanism is little understood. Here, we present the crystal structure of Nematocida HUWE1, revealing how a single E3 enzyme has specificity for a multitude of unrelated substrates.

View Article and Find Full Text PDF

The linear ubiquitin chain assembly complex (LUBAC) is the only known ubiquitin ligase for linear/Met1-linked ubiquitin chain formation. One of the LUBAC components, heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1L), was recently shown to catalyse oxyester bond formation between ubiquitin and some substrates. However, oxyester bond formation in the context of LUBAC has not been directly observed.

View Article and Find Full Text PDF
Article Synopsis
  • The tRNA ligase complex (tRNA-LC) is involved in splicing precursor tRNAs and mRNA during the unfolded protein response (UPR) but is vulnerable to oxidative damage due to its catalytic subunit's structure.
  • Research confirms that PYROXD1, an essential oxidoreductase, co-evolved with the tRNA-LC and helps maintain its activity by converting RTCB-bound NAD(P)H into an antioxidant form, thus protecting it from oxidative inactivation.
  • Mutations in PYROXD1 that lead to human muscle diseases only partially preserve tRNA-LC function, highlighting the importance of this protective mechanism in cellular processes.
View Article and Find Full Text PDF

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive.

View Article and Find Full Text PDF

Protein degraders, also known as proteolysis targeting chimeras (PROTACs), are bifunctional small molecules that promote cellular degradation of a protein of interest (POI). PROTACs act as molecular mediators, bringing an E3 ligase and a POI into proximity, thus promoting ubiquitination and degradation of the targeted POI. Despite their great promise as next-generation pharmaceutical drugs, the development of new PROTACs is challenged by the complexity of the system, which involves binary and ternary interactions between components.

View Article and Find Full Text PDF

RNF213 is the major susceptibility factor for Moyamoya disease, a progressive cerebrovascular disorder that often leads to brain stroke in adults and children. Characterization of disease-associated mutations has been complicated by the enormous size of RNF213. Here, we present the cryo-EM structure of mouse RNF213.

View Article and Find Full Text PDF

Startling reports described the paradoxical triggering of the human mitogen-activated protein kinase pathway when a small-molecule inhibitor specifically inactivates the BRAF V600E protein kinase but not wt-BRAF. We performed a conceptual analysis of the general phenomenon "activation by inhibition" using bacterial and human HtrA proteases as models. Our data suggest a clear explanation that is based on the classic biochemical principles of allostery and cooperativity.

View Article and Find Full Text PDF

Myosin is a motor protein that is essential for a variety of processes ranging from intracellular transport to muscle contraction. Folding and assembly of myosin relies on a specific chaperone, UNC-45. To address its substrate-targeting mechanism, we reconstitute the interplay between Caenorhabditis elegans UNC-45 and muscle myosin MHC-B in insect cells.

View Article and Find Full Text PDF

For long-lived contractile cells, such as striated muscle cells, maintaining proteome integrity is a challenging task. These cells require hundreds of components that must be properly synthesized, folded, and incorporated into the basic contractile unit, the sarcomere. Muscle protein quality control in cells is mainly guaranteed by the ubiquitin-proteasome system (UPS), the lysosome-autophagy system, and various molecular chaperones.

View Article and Find Full Text PDF