J Am Soc Mass Spectrom
August 2024
A combination of ion mobility-mass spectrometry (IM-MS) measurements and computational methods were used to study structural and physicochemical properties of a range of quinoline-based drugs: amodiaquine (AQ), cinchonine (CIN), chloroquine (CQ), mefloquine (MQ), pamaquine (PQ), primaquine (PR), quinacrine (QR), quinine (QN), and sitamaquine (SQ). In experimental studies, ionization of these compounds using atmospheric pressure chemical ionization (APCI) yields monoprotonated species in the gas phase while electrospray ionization (ESI) also produces diprotonated forms of AQ, CQ, and QR and also for PQ, SQ, and QN in the presence of formic acid as an additive. Comparison of the trajectory-method-calculated and experimental IM-derived collisional cross sections (CCS) were used to assign both the protonation sites and conformer geometry of all drugs considered with biases of 0.
View Article and Find Full Text PDFIn addition to providing critical knowledge of the accurate mass of ions, ion mobility-mass spectrometry (IM-MS) delivers complementary data relating to the conformation and size of ions in the form of an ion mobility spectrum and derived parameters, namely, the ion's mobility (K) and the IM-derived collision cross section (CCS). However, the maximum amount of information obtained in IM-MS measurements is not currently transferred into analytical databases including the full mobility spectra (CCS distributions) as well as capturing of additional ion species (e.g.
View Article and Find Full Text PDFIon mobility-mass spectrometry (IM-MS) offers benefits for lipidomics by obtaining IM-derived collision cross sections (CCS), a conditional property of an ion that can enhance lipid identification. While drift tube (DT) IM-MS retains a direct link to the primary experimental method to derive CCS values, other IM technologies rely solely on external CCS calibration, posing challenges due to dissimilar chemical properties between lipids and calibrants. To address this, we introduce MobiLipid, a novel tool facilitating the CCS quality control of IM-MS lipidomics workflows by internal standardization.
View Article and Find Full Text PDFFast liquid chromatography (LC) amino acid enantiomer separation of 6-aminoquinolyl--hydroxysuccinimidyl carbamate (AQC) derivatives using a chiral core-shell particle tandem column with weak anion exchange and zwitterionic-type quinine carbamate selectors in less than 3 min was achieved. Enantiomers of all AQC-derivatized proteinogenic amino acids and some isomeric ones (24 in total plus achiral glycine) were baseline separated ( > 1.5 except for glutamic acid with = 1.
View Article and Find Full Text PDFEfficient micronutrient acquisition is a critical factor in selecting micronutrient dense crops for human consumption. Enhanced exudation and re-uptake of metal chelators, so-called phytosiderophores, by roots of graminaceous plants has been implicated in efficient micronutrient acquisition. We compared PS biosynthesis and exudation as a response mechanism to either Fe, Zn or Cu starvation.
View Article and Find Full Text PDFPhytosiderophores (PS) are root exudates released by grass species (Poaceae) that play a pivotal role in iron (Fe) plant nutrition. A direct determination of PS in biological samples is of paramount importance in understanding micronutrient acquisition mediated by PS. To date, eight plant-born PS have been identified; however, no analytical procedure is currently available to quantify all eight PS simultaneously with high analytical confidence.
View Article and Find Full Text PDFAminobenzoic acids are well-established candidates for understanding the formation of isomeric ions in positive mode electrospray ionization as they yield both N- and O-protomers (prototropic isomers) at the amine and carbonyl sites, respectively. In the present work, a combination of ion mobility-mass spectrometry and density functional theory calculations to determine the protonation and deprotonation behaviour of four diamino benzoic acid and four aminophthalic acid isomers is presented. The additional COOH group on the ring of aminophthalic acids provides experimental evidence regarding the mechanism of intramolecular NH → O proton transfer, which has been the subject of debate in recent years.
View Article and Find Full Text PDFClimate change directs the focus in biotechnology increasingly on one-carbon metabolism for fixation of CO and CO-derived chemicals (e.g. methanol, formate) to reduce our reliance on both fossil and food-competing carbon sources.
View Article and Find Full Text PDFFatty acids are an abundant class of lipids that are characterised by wide structural variation including isomeric diversity arising from the position and configuration of functional groups. Traditional approaches to fatty acid characterisation have combined chromatography and mass spectrometry for a description of the composition of individual fatty acids while infrared (IR) spectroscopy has provided insights into the functional groups and bond configurations at the bulk level. Here we exploit universal 3-pyridylcarbinol ester derivatization of fatty acids to acquire IR spectra of individual lipids as mass-selected gas-phase ions.
View Article and Find Full Text PDFChem Commun (Camb)
February 2023
Here, we show how intramolecular proton transfer can be induced and monitored with the example of polycyclic aromatic amines using in-source ion-activation and ion mobility-mass spectrometry. Experiment and DFT calculations reveal that the protonation rate of C-atoms in aromatic rings is controlled by the energy barrier of intramolecular NH → C proton transfer.
View Article and Find Full Text PDFThe low solubility of inorganic iron(III) in seawater leads to very limited availability of this important micronutrient for marine organisms. Estuarine or oceanic iron is almost entirely bound to organic ligands of mainly unknown chemical structure. In this context, riverine input of iron rich, land-derived dissolved organic matter (DOM) can play an important role in coastal areas and investigation of potential Fe-ligands in DOM is of high interest.
View Article and Find Full Text PDFSteroids play key roles in various biological processes and are characterized by many isomeric variants, which makes their unambiguous identification challenging. Ion mobility-mass spectrometry (IM-MS) has been proposed as a suitable platform for this application, particularly using collision cross section () databases obtained from different commercial IM-MS instruments. is seen as an ideal additional identification parameter for steroids as long-term repeatability and interlaboratory reproducibility of this measurand are excellent and matrix effects are negligible.
View Article and Find Full Text PDFThe major benefits of integrating ion mobility (IM) into LC-MS methods for small molecules are the additional separation dimension and especially the use of IM-derived collision cross sections (CCS) as an additional ion-specific identification parameter. Several large CCS databases are now available, but outliers in experimental interplatform IM-MS comparisons are identified as a critical issue for routine use of CCS databases for identity confirmation. We postulate that different routine external calibration strategies applied for traveling wave (TWIM-MS) in comparison to drift tube (DTIM-MS) and trapped ion mobility (TIM-MS) instruments is a critical factor affecting interplatform comparability.
View Article and Find Full Text PDFIonization of organic compounds with different structural and energetic properties including benzene derivatives, polycyclic aromatic hydrocarbons (PAHs), ketones, and polyenes was studied using a commercial atmospheric pressure corona discharge (APCI) ion source on a drift tube ion mobility-quadrupole-time-of-flight mass spectrometer (IM-QTOFMS). It was found that the studied cohort of compounds can be experimentally ionized via protonation, charge transfer, and hydride abstraction leading to formation of [M + H], [M], and [M - H] species, respectively. By experimentally monitoring the product ions and comparing the thermodynamic data for different ionization paths, it was proposed that NO is one of the main reactant ions (RIs) in the ion source used.
View Article and Find Full Text PDFA fully non-targeted analytical workflow for the investigation of a riverbank filtration site located at the river Danube has been developed and applied. Variations of compound intensities at different sampling locations of the riverbank filtration site and, for a single production well, over a monitoring period of one year have been investigated using liquid chromatography combined with time-of-flight-mass spectrometry followed by evaluation via non-targeted data analysis. Internal standardization and appropriate quality control strategies have been implemented into the workflow for reduction of possible methodological biases influencing data interpretation.
View Article and Find Full Text PDFNon-targeted metabolomics is increasingly applied in various applications for understanding biological processes and finding novel biomarkers in living organisms. However, high-confidence identity confirmation of metabolites in complex biological samples is still a significant bottleneck, especially when using single-stage mass analysers. In the current study, a complete workflow for alternating in-source fragmentation on a time-of-flight mass spectrometry (TOFMS) instrument for non-targeted metabolomics is presented.
View Article and Find Full Text PDFThe focus of this work was the implementation of ion mobility (IM) and a prototype quadrupole driver within data independent acquisition (DIA) using a drift tube IM-QTOFMS aiming to improve the level of confidence in identity confirmation workflows for non-targeted metabolomics. In addition to conventional all ions (IM-AI) acquisition, quadrupole resolved all ions (IM-QRAI) acquisition allows a drift time-directed precursor ion isolation in DIA using sequential isolation of precursor ions using mass windows of up to 100 Da which can be rapidly ramped across single ion mobility transients (i.e.
View Article and Find Full Text PDFIn a previous work, we explored zone broadening and the achievable plate numbers in linear drift tube ion mobility-mass spectrometry through developing a plate-height model [1]. On the basis of these findings, the present theoretical study extends the model by exploring peak-to-peak resolution and peak capacity in ion mobility separations. The first part provides a critical overview of chromatography-influenced resolution equations, including refinement of existing formulae.
View Article and Find Full Text PDFLC-MS based metabolomics approach revealed that putative metabolites other than flavonoids may significantly contribute to the sexual compatibility reactions in Prunus armeniaca. Possible mechanisms on related microtubule-stabilizing effects are provided. Identification of metabolites playing crucial roles in sexual incompatibility reactions in apricot (Prunus armeniaca L.
View Article and Find Full Text PDFRugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low-field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC-DAD-DTIM-QTOFMS method.
View Article and Find Full Text PDFAn exploratory study for verifying regional geographical origin of carrots from specific production regions in Austria ("Genussregionen") was performed by combining chemical fingerprinting methods, namely n(Sr)/n(Sr) isotope amount ratios, multi-elemental and metabolomic pattern. Chemometric classification models were built on individual and combined datasets using (data-driven) soft independent modelling of class analogies and (orthogonal) projections to latent structures-discriminant analysis to characterise and differentiate carrots grown in five regions in Austria. A predictive ability of 97% or better (depending on the classification technique) was obtained using combined Sr isotope amount ratios and multi-elemental data.
View Article and Find Full Text PDFUniform field drift tube ion mobility-mass spectrometry (DTIM-MS) has emerged as a valuable tool for a range of analytical applications. In focus here are standardized collisional cross section values from DTIM-MS (CCS) as a candidate identification point for various analytical workflows. Of critical importance in establishing this parameter as a valid identification point is a rugged estimation of uncertainties according to the procedures used for their derivation.
View Article and Find Full Text PDFIn the past decade, ion mobility spectrometry (IMS) in combination with mass spectrometry (IM-MS) became a widely employed technique for the separation and structural characterization of ionic species in the gas phase. Similarly to chromatography, where studies on the mechanism of band broadening and adequate plate-height equations have been aiding method development and promoting advancements in column technology, a suitable resolving power theory of drift tube ion mobility-mass spectrometry (DTIM-MS) is essential to stimulate further progress in this emerging field of separation science. In the present study, therefore, we explore dispersion processes in detail and present a plate-height model of ion mobility-mass spectrometry.
View Article and Find Full Text PDFBackground: Cell line-specific, genome-scale metabolic models enable rigorous and systematic in silico investigation of cellular metabolism. Such models have recently become available for Chinese hamster ovary (CHO) cells. However, a key ingredient, namely an experimentally validated biomass function that summarizes the cellular composition, was so far missing.
View Article and Find Full Text PDF