Publications by authors named "Tim Cardilin"

A large enough sample size of patients is required to statistically show that one treatment is better than another. However, too large a sample size is expensive and can also result in findings that are statistically significant, but not clinically relevant. How sample sizes should be chosen is a well-studied problem in classical statistics and analytical expressions can be derived from the appropriate test statistic.

View Article and Find Full Text PDF

Progression-free survival (PFS) is an important clinical metric in oncology and is typically illustrated and evaluated using a survival function. The survival function is often estimated post-hoc using the Kaplan-Meier estimator but more sophisticated techniques, such as population modeling using the nonlinear mixed-effects framework, also exist and are used for predictions. However, depending on the choice of population model PFS will follow different distributions both quantitatively and qualitatively.

View Article and Find Full Text PDF

Small-interfering ribonucleic acids (siRNAs) with N-acetylgalactosamine (GalNAc) conjugation for improved liver uptake represent an emerging class of drugs that modulate liver-expressed therapeutic targets. The pharmacokinetics of GalNAc-siRNAs are characterized by a rapid distribution from plasma to tissue (hours) and a long terminal plasma half-life, analyzed in the form of the antisense strand, driven by redistribution from tissue (weeks). Understanding how clinical pharmacokinetics relate to the dose and type of siRNA chemical stabilizing method used is critical, e.

View Article and Find Full Text PDF

Progression-free survival (PFS) is an important clinical metric for comparing and evaluating similar treatments for the same disease within oncology. After the completion of a clinical trial, a descriptive analysis of the patients' PFS is often performed post hoc using the Kaplan-Meier estimator. However, to perform predictions, more sophisticated quantitative methods are needed.

View Article and Find Full Text PDF

Background: To increase the chances of finding efficacious anticancer drugs, improve development times and reduce costs, it is of interest to rank test compounds based on their potential for human use as early as possible in the drug development process. In this paper, we present a method for ranking radiosensitizers using preclinical data.

Methods: We used data from three xenograft mice studies to calibrate a model that accounts for radiation treatment combined with radiosensitizers.

View Article and Find Full Text PDF

Purpose: Tumor growth inhibition (TGI) models are regularly used to quantify the PK-PD relationship between drug concentration and in vivo efficacy in oncology. These models are typically calibrated with data from xenograft mice and before being used for clinical predictions, translational methods have to be applied. Currently, such methods are commonly based on replacing model components or scaling of model parameters.

View Article and Find Full Text PDF

A central question in drug discovery is how to select drug candidates from a large number of available compounds. This analysis presents a model-based approach for comparing and ranking combinations of radiation and radiosensitizers. The approach is quantitative and based on the previously-derived Tumor Static Exposure (TSE) concept.

View Article and Find Full Text PDF

Proliferation of an in vitro population of cancer cells is described by a linear cell cycle model with n states, subject to provocation with m chemotherapeutic compounds. Minimization of a linear combination of constant drug exposures is considered, with stability of the system used as a constraint to ensure a stable or shrinking cell population. The main result concerns the identification of redundant compounds, and an explicit solution formula for the case where all exposures are nonzero.

View Article and Find Full Text PDF

Purpose: Radiation therapy, whether given alone or in combination with chemical agents, is one of the cornerstones of oncology. We develop a quantitative model that describes tumor growth during and after treatment with radiation and radiosensitizing agents. The model also describes long-term treatment effects including tumor regrowth and eradication.

View Article and Find Full Text PDF

Quantitative techniques improve our understanding of tumor volume data for combination treatments and its translation across in vivo models and species. The focus of this paper is therefore on understanding in vivo data, highlighting key structural elements of pharmacodynamic tumor models, and challenging these methods from a translational point of view. We introduce the concept of Tumor Static Exposure (TSE) both for single and multiple combined anticancer agents.

View Article and Find Full Text PDF

Radiotherapy is one of the major therapy forms in oncology, and combination therapies involving radiation and chemical compounds can yield highly effective tumor eradication. In this paper, we develop a tumor growth inhibition model for combination therapy with radiation and radiosensitizing agents. Moreover, we extend previous analyses of drug combinations by introducing the tumor static exposure (TSE) curve.

View Article and Find Full Text PDF

Combination therapies are widely accepted as a cornerstone for treatment of different cancer types. A tumor growth inhibition (TGI) model is developed for combinations of cetuximab and cisplatin obtained from xenograft mice. Unlike traditional TGI models, both natural cell growth and cell death are considered explicitly.

View Article and Find Full Text PDF