Publications by authors named "Tim C Lueth"

Robotic legs are an important component of the quadruped robot for achieving different motion gaits. Although the conventional rigid-link-based legs can generally perform robust motions, they still have the issues with poor sealing when operating in complex and liquid terrains. To cope with this problem, fully compliant legs with monolithic structure have been introduced in recent years to improve the system compactness and structural compliance of quadruped robots.

View Article and Find Full Text PDF

Cochlear implants (CI) are an established treatment for people with deafness or severe hearing loss. To restore patients' hearing an electrode array (EA) of the CI is inserted into the cochlea to stimulate the auditory nerve. Thereby, the exact positioning and gentle insertion of the EA is crucial for optimal hearing perception outcome.

View Article and Find Full Text PDF

The rapid development of additive manufacturing technology makes it possible to fabricate a patient-specific surgical robot in a short time. To simplify the assembly process of the printed robotic system, compliant-joint-based monolithic structures are often used as substitutes for rigid-link mechanisms to realize flexible bending. In this paper, we introduce a cruciate-ligament-inspired compliant joint (CLCJ) to improve the bending stability of the 3D-printed continuum surgical robots.

View Article and Find Full Text PDF

Compliant mechanisms are frequently used in the design of prosthetic fingers since their monolithic structure and flexible movement are quite similar to the biological human fingers. However, the design of compliant prosthetic fingers is not easy, as the conventional rigid-link-based mechanism theory cannot be directly applied. In this paper, we introduce a 3D topology optimization based design framework to simplify the synthesis process of bionic compliant prosthetic fingers.

View Article and Find Full Text PDF

Purpose: Compliant mechanisms are commonly used in the design of manipulator and surgical robotic tools for minimally invasive surgery (MIS) thanks to their compactness, ability of miniaturization and lower part count. However, conventional compliant joint has higher internal stiffness, which limits the bending radius. To overcome this problem, a novel tendon-driven manipulator structure based on monolithic compliant rolling-contact joint (CRCJ) is proposed.

View Article and Find Full Text PDF

A major drawback of endoscopic en-bloc resection technique is its inability to perform bimanual tasks. Although endoscopic platforms that enable bimanual tasks are commercially available, they are neither approved for various locations nor adaptable to specific patients and indications. Based on evolution of an adaptive 3D-printable platform concept, system variants with different characteristic properties were evaluated for ESD scenarios, ex-vivo in two locations in the stomach and colorectum.

View Article and Find Full Text PDF

Disposable forceps are frequently used in different surgical procedures to prevent infections caused by poorly sterilized reusable metal forceps. Compared to traditional rigid-joint mechanisms, compliant mechanisms are much easier to sterilize due to their monolithic structure, hence they are widely used for designing disposable surgical forceps. However, the clamping performance of plastic compliant forceps is generally less robust than metal forceps, which has greatly limited their use in medical applications.

View Article and Find Full Text PDF

Mitral valve regurgitation is one of the most common heart valve diseases and mitral valve repair is the favored therapy, in which a part of the mitral valve is resected. To improve preoperative planning of this challenging surgery, patient-specific mitral valve replicas have been developed on which the repair can be simulated. However, there is no possibility yet to transfer the planning from the replica to the surgery of the patient.

View Article and Find Full Text PDF

Purpose: In the era of patient-centered medicine, clinical procedures, tools and instruments should be individually adapted to the patient. In this context, the presented 3D-printed Single-Port Overtube Manipulator System follows the aims to provide patient- and task-specific disposable manipulators for minimally invasive surgery. In a first experiment, the robustness of the monolithic flexure hinge structures in use as robotic manipulators will be investigated.

View Article and Find Full Text PDF

Purpose: Draf drainage is the standard treatment procedure for frontal sinus diseases. In this procedure, rigid angled endoscopes and rigid curved instruments are used. However, laterally located pathologies in the frontal sinus cannot be reached with rigid instrumentation.

View Article and Find Full Text PDF

This paper presents the methods and the materials towards characterizing frontal sinus anatomy and developing representative anatomical models which reflect the variance of the anatomy with three different sizes: small, medium and large. Anatomical characterization was performed using computer tomography data of up to 50 anonymous patients. Dimensional and volumetric measurements were conducted using the .

View Article and Find Full Text PDF

Propulsion of swimming robots at the surface and underwater is largely dominated by rotary propellers due to high thrust, but at the cost of low efficiency. Due to their inherently high speed turning motion, sharp propeller blades and generated noise, they also present a disturbance to maritime ecosystems. Our work presents a bio-inspired approach to efficient and eco-friendly swimming with moderate to high thrust.

View Article and Find Full Text PDF

Purpose: The minimally invasive closure of the left atrial appendage is a promising alternative to anticoagulation for stroke prevention in patients suffering from atrial fibrillation. One of the challenges of this procedure is the correct positioning and the coaxial alignment of the tip of the catheter sheath to the implant landing zone.

Method: In this paper, a novel preoperative planning system is proposed that allows patient-individual shaping of catheters to facilitate the correct positioning of the catheter sheath by offering a patient-specific catheter shape.

View Article and Find Full Text PDF

Today's landscape of medical devices is dominated by stand-alone systems and proprietary interfaces lacking cross-vendor interoperability. This complicates or even impedes the innovation of novel, intelligent assistance systems relying on the collaboration of medical devices. Emerging approaches use the service-oriented architecture (SOA) paradigm based on Internet protocol (IP) to enable communication between medical devices.

View Article and Find Full Text PDF

Petrous apex lesions constitute considerable surgical challenges due to their location in the skull base and close relationship with critical structures such as inner ear, carotid arteries, facial nerves and jugular bulb. These lesions often cannot be treated completely with rigid tools due to the limited accessibility. We are aiming to develop a snake-like manipulator to assist surgeons with the infralabyrinthine treatment of petrous apex lesions with increased dexterity.

View Article and Find Full Text PDF

The middle ear is a sophisticated and complex structure with a variety of functions, yet a delicate organ prone to injuries due to various reasons. Both, understanding and reconstructing its functions has always been an important topic for researchers from medical and technical background. Currently, human temporal bones are generally used as model for tests, experiments and validation of the numerical results.

View Article and Find Full Text PDF

Quantitative assessment of parkinsonian tremor based on inertial sensors can provide reliable feedback on the effect of medication. In this regard, the features of parkinsonian tremor and its unique properties such as motor fluctuations and dyskinesia are taken into account. Least-square-estimation models are used to assess the severities of rest, postural, and action tremors.

View Article and Find Full Text PDF

Background: As the most characteristic feature of Parkinson's disease (PD), bradykinesia (slowness of movement) affects all patients with Parkinson's disease and interferes with their daily activities. This study introduces a wearable bradykinesia assessment system whose core component is composed of an inertial measurement unit.

Methods: The system diagram and assessment task were defined in accordance with clinical requirements from neurologists.

View Article and Find Full Text PDF

The aim of this work is to provide the surgeon-urologist with a system for automatic 2D and 3D-reconstruction of the bladder wall to help him within the treatment of bladder cancer as well as planning and documentation of the interventions. Within this small pilot-framework a fast feasibility study was made to clear if it is generally possible to build a bladder wall model using a special endoscope with an embedded laser-based distance measurement, an optical navigation system and modern image stitching techniques. Some experiments with a realistic bladder phantom have shown that this initial concept is generally acceptable and can be used with some extensions to build a system which can provide an automatic bladder wall reconstruction in real time to be used within a surgical intervention.

View Article and Find Full Text PDF

In this article, a new surgical model for evaluating telemanipulators used in middle ear surgery is presented. The purpose of this work was to develop an evaluation and training system which imitates a typical surgical task of middle ear surgery and which can easily be repeated in order to get significant result. The abstract task can be performed manually or by means of a microsurgical telemanipulator and guaranties stable experimental conditions between different subjects at any time.

View Article and Find Full Text PDF

Ultrasonography is a widespread intraoperative imaging modality. However, it suffers from several shortcomings e.g.

View Article and Find Full Text PDF

Laparoscopic partial nephrectomy has become more and more popular in the last decade. Video laparoscopes remain the gold standard of intraoperative imaging during laparoscopic interventions. However, providing only superficial images of the target tissue.

View Article and Find Full Text PDF

This article describes a new interaction device for surgical navigation systems--the so-called navigation mouse system. The idea is to use a tracked instrument of a surgical navigation system like a pointer to control the software. The new interaction system extends existing navigation systems with a microcontroller-unit.

View Article and Find Full Text PDF

In order to prevent nerve injuries during ear-nose-throat (ENT) and skull base surgery, the method Navigated Control Functional is presented. Thereby, the power of active instruments is controlled based on position information, provided by a surgical navigation system, and nerve activity information, provided by a neurophysiologic monitoring system. Electrical stimulation is usually required for the extraction of distance information from neurophysiologic signals (e.

View Article and Find Full Text PDF

This paper describes a method for measuring the shape accuracy of a cylindrical hole which is created by means of an automatically power-controlled laser system using navigated control. In dental surgery, drills or mills are used for bone treatment. For most patients the use of these instruments is very inconvenient.

View Article and Find Full Text PDF