Spin transition (ST) materials are attractive for developing photoswitchable devices, but their slow material transformations limit device applications. Size reduction could enable faster switching, but the photoinduced dynamics at the nanoscale remains poorly understood. Here, we report a femtosecond optical pump multimodal X-ray probe study of polymeric nanorods.
View Article and Find Full Text PDFThe dynamics of photodissociation and recombination in heme proteins represent an archetypical photochemical reaction widely used to understand the interplay between chemical dynamics and reaction environment. We report a study of the photodissociation mechanism for the Fe(II)-S bond between the heme iron and methionine sulfur of ferrous cytochrome c. This bond dissociation is an essential step in the conversion of cytochrome c from an electron transfer protein to a peroxidase enzyme.
View Article and Find Full Text PDFThe ePix10ka2M (ePix10k) is a new large area detector specifically developed for X-ray free-electron laser (XFEL) applications. The hybrid pixel detector was developed at SLAC to provide a hard X-ray area detector with a high dynamic range, running at the 120 Hz repetition rate of the Linac Coherent Light Source (LCLS). The ePix10k consists of 16 modules, each with 352 × 384 pixels of 100 µm × 100 µm distributed on four ASICs, resulting in a 2.
View Article and Find Full Text PDFFemtosecond-resolved Extended X-ray Absorption Fine Structure (EXAFS) measurements of solvated transition metal complexes are successfully implemented at the X-ray Free Electron Laser LCLS. Benchmark experiments on [Fe(terpy)] in solution show a signal-to-noise ratio on the order of 500, comparable to typical 100 ps-resolution synchrotron measurements. In the few femtoseconds after photoexcitation, we observe the EXAFS fingerprints of a short-lived (∼100 fs) intermediate as well as those of a vibrationally hot long-lived (∼ns) excited state.
View Article and Find Full Text PDFWe report x-ray free electron laser experiments addressing ground-state structural dynamics of the diplatinum anion Pt_{2}POP_{4} following photoexcitation. The structural dynamics are tracked with <100 fs time resolution by x-ray scattering, utilizing the anisotropic component to suppress contributions from the bulk solvent. The x-ray data exhibit a strong oscillatory component with period 0.
View Article and Find Full Text PDFA precise spectral characterization of every single pulse is required in many x-ray free-electron laser (XFEL) experiments due to the fluctuating spectral content of self-amplified spontaneous emission (SASE) beams. Bent single-crystal spectrometers can provide sufficient spectral resolution to resolve the SASE spikes while also covering the full SASE bandwidth. To better withstand the high heat load induced by the 4.
View Article and Find Full Text PDFAfter a century of research, the potential-dependent ion distribution at electrode/electrolyte interfaces is still under debate. In particular for solvent-free electrolytes such as room-temperature ionic liquids, classical theories for the electrical double layer are not applicable. Using a combination of in situ high-energy X-ray reflectivity and impedance spectroscopy measurements, we determined this distribution with sub-molecular resolution.
View Article and Find Full Text PDFWe study the structural dynamics of photoexcited [Co(terpy)_{2}]^{2+} in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitation event leads to elongation of the Co-N bonds, followed by coherent Co-N bond length oscillations arising from the impulsive excitation of a vibrational mode dominated by the symmetrical stretch of all six Co-N bonds. This mode has a period of 0.
View Article and Find Full Text PDFIn liquid phase chemistry dynamic solute-solvent interactions often govern the path, ultimate outcome, and efficiency of chemical reactions. These steps involve many-body movements on subpicosecond time scales and thus ultrafast structural tools capable of capturing both intramolecular electronic and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3](2+), with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe.
View Article and Find Full Text PDFThe pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur.
View Article and Find Full Text PDFWith the arrival of X-ray Free Electron Lasers (XFELs), 2D area detectors with a large dynamic range for detection of hard X-rays with fast readout rates are required for many types of experiments. Extracting the desired information from these detectors has been challenging due to unpredicted fluctuations in the measured images. For techniques such as time-resolved X-ray Diffuse Scattering (XDS), small differences in signal intensity are the starting point for analysis.
View Article and Find Full Text PDFWe describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast global conformational change that arises within picoseconds and precedes the propagation of heat through the protein. This provides direct structural evidence for a 'protein quake': the hypothesis that proteins rapidly dissipate energy through quake-like structural motions.
View Article and Find Full Text PDFGround- and excited-state structures of the bimetallic, ligand-bridged compound Ir2(dimen)4(2+) are investigated in acetonitrile by means of time-resolved X-ray scattering. Following excitation by 2 ps laser pulses at 390 nm, analysis of difference scattering patterns obtained at eight different time delays from 250 ps to 300 ns yields a triplet excited-state distance between the two Ir atoms of 2.90(2) Å and a triplet excited-state lifetime of 410(70) ns.
View Article and Find Full Text PDF