Astrocytes play a formative role in memory consolidation during physiological conditions; when dysregulated, astrocytes release glial fibrillary acidic protein (GFAP), which has been linked with negative memory outcomes in animal studies. We examined the association between blood GFAP, memory, and white matter (WM) integrity, accounting for blood markers of AD pathology (i.e.
View Article and Find Full Text PDFBACKGROUND: Endogenous Granulocyte Macrophage Colony Stimulating Factor (GMCSF) is released in rheumatoid arthritis patients, who are largely protected from Alzheimer's disease (AD). Introducing exogenous GMCSF into an AD mouse model reduced amyloid deposition by 55% and restored normal cognition. No published studies have examined exogenous GMCSF and cognitive functioning in humans.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a negative risk factor for the development of Alzheimer's disease (AD). While it has been commonly assumed that RA patients' usage of non-steroidal anti-inflammatory drugs (NSAIDs) helped prevent onset and progression of AD, NSAID clinical trials have proven unsuccessful in AD patients. To determine whether intrinsic factors within RA pathogenesis itself may underlie RA's protective effect, we investigated the activity of colony-stimulating factors, upregulated in RA, on the pathology and behavior of transgenic AD mice.
View Article and Find Full Text PDFA common problem faced by researchers using transgenic models to study disease is the phenotypic variability that exists within a group or colony of animals. Significant pathological analyses thus often require large numbers of mice to perform. Many lines of transgenic mice harboring the gene for human amyloid precursor protein (APP) with different mutations causing familial Alzheimer's disease have been developed over the past decade to study plaque deposition and other aspects of AD.
View Article and Find Full Text PDF