Publications by authors named "Tim Bartels"

Article Synopsis
  • Researchers focused on how different forms of α-synuclein (monomers and multimers) affect synaptic processes using lamprey synapses for their experiments.
  • Both forms impaired vesicle trafficking, but they had distinct effects: monomers caused abnormal fusion/fission and disrupted endocytosis, while multimers decreased vesicle docking.
View Article and Find Full Text PDF

Controlling the polymorphic assemblies of α-synuclein (αS) oligomers is crucial to reroute toxic protein aggregation implicated in Parkinson's disease (PD). One potential mediator is the interaction of αS tetramers with cell membranes, which may regulate the dynamic balance between aggregation-prone disordered monomers and aggregation-resistant helical tetramers. Here, we model diverse tetramer-cell interactions and compare the structure-function relations at the supramolecular-biological interface with available experimental data.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers identified 38 genes that influence αSyn propagation, focusing on two genes, which help understand how αSyn interacts with lipids and forms inclusions resembling Lewy Bodies.
  • * Analysis of gene expression changes after manipulating these genes revealed a connection to increased risk variants in Parkinson's patients, supporting a model where genetic factors disrupt αSyn regulation, leading to disease progression.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates protein-rich inclusions in neurodegeneration, noting that current iPSC models lack reproducibility and speed in developing these inclusions.
  • Researchers created new iPSC models that allow for rapid production of CNS cells with proteins prone to aggregation, enabling the tracking of inclusions at a single level.
  • They identified various inclusion types with differing effects on neuron survival and isolated proteins that could influence toxicity, paving the way for improved drug development for neurodegenerative diseases.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on synucleinopathies, specifically Parkinson's disease (PD), characterized by the buildup of α-synuclein protein in the brain and other tissues.
  • - Researchers examined blood samples from familial PD patients with G51D mutations and sporadic PD patients, finding that levels of stable α-synuclein tetramers were lower compared to control groups.
  • - The decrease in α-synuclein tetramers was also observed in asymptomatic G51D carriers, suggesting that destabilization of these proteins may occur before the onset of PD symptoms, pointing to their potential use as early biomarkers for the disease.
View Article and Find Full Text PDF

Mer tyrosine kinase (MerTK) is a receptor tyrosine kinase that mediates non-inflammatory, homeostatic phagocytosis of diverse types of cellular debris. Highly expressed on the surface of microglial cells, MerTK is of importance in brain development, homeostasis, plasticity and disease. Yet, involvement of this receptor in the clearance of protein aggregates that accumulate with ageing and in neurodegenerative diseases has yet to be defined.

View Article and Find Full Text PDF

Fibrillary aggregated α-synuclein represents the neurologic hallmark of Parkinson's disease and is considered to play a causative role in the disease. Although the causes leading to α-synuclein aggregation are not clear, the GM1 ganglioside interaction is recognized to prevent this process. How GM1 exerts these functions is not completely clear, although a primary role of its soluble oligosaccharide (GM1-OS) is emerging.

View Article and Find Full Text PDF

In Parkinson's disease and other synucleinopathies, the elevation of α-synuclein phosphorylated at Serine129 (pS129) is a widely cited marker of pathology. However, the physiological role for pS129 has remained undefined. Here we use multiple approaches to show for the first time that pS129 functions as a physiological regulator of neuronal activity.

View Article and Find Full Text PDF

The protein α-synuclein, a key player in Parkinson's disease (PD) and other synucleinopathies, exists in different physiological conformations: cytosolic unfolded aggregation-prone monomers and helical aggregation-resistant multimers. It has been shown that familial PD-associated missense mutations within the α-synuclein gene destabilize the conformer equilibrium of physiologic α-synuclein in favor of unfolded monomers. Here, we characterized the relative levels of unfolded and helical forms of cytosolic α-synuclein in post-mortem human brain tissue and showed that the equilibrium of α-synuclein conformations is destabilized in sporadic PD and DLB patients.

View Article and Find Full Text PDF

α-Synuclein is a presynaptic protein that regulates synaptic vesicle trafficking under physiological conditions. However, in several neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, α-synuclein accumulates throughout the neuron, including at synapses, leading to altered synaptic function, neurotoxicity, and motor, cognitive, and autonomic dysfunction. Neurons typically contain both monomeric and multimeric forms of α-synuclein, and it is generally accepted that disrupting the balance between them promotes aggregation and neurotoxicity.

View Article and Find Full Text PDF

Dementia is a rapidly rising global health crisis that silently disables families and ends lives and livelihoods around the world. To date, however, no early biomarkers or effective therapies exist. It is now clear that brain microglia are more than mere bystanders or amyloid phagocytes; they can act as governors of neuronal function and homeostasis in the adult brain.

View Article and Find Full Text PDF

Since researchers identified α-synuclein as the principal component of Lewy bodies and Lewy neurites, studies have suggested that it plays a causative role in the pathogenesis of dementia with Lewy bodies and other 'synucleinopathies'. While α-synuclein dyshomeostasis likely contributes to the neurodegeneration associated with the synucleinopathies, few direct biochemical analyses of α-synuclein from diseased human brain tissue currently exist. In this study, we analysed sequential protein extracts from a substantial number of patients with neuropathological diagnoses of dementia with Lewy bodies and corresponding controls, detecting a shift of cytosolic and membrane-bound physiological α-synuclein to highly aggregated forms.

View Article and Find Full Text PDF

Parkinson's disease (PD) is one of the most common neurodegenerative disorders, and both genetic and histopathological evidence have implicated the ubiquitous presynaptic protein α-synuclein (αSyn) in its pathogenesis. Recent work has investigated how disrupting αSyn's interaction with membranes triggers trafficking defects, cellular stress, and apoptosis. Special interest has been devoted to a series of mutants exacerbating the effects of the E46K mutation (associated with autosomal dominant PD) through homologous Glu-to-Lys substitutions in αSyn's N-terminal region ( E35K and E61K).

View Article and Find Full Text PDF

N-terminal acetylation is one of the most common co- and post-translational modifications of the eukaryotic proteome and regulates numerous aspects of cellular physiology, such as protein folding, localization and turnover. In particular α-synuclein, whose dyshomeostasis has been tied to the pathogenesis of several neurodegenerative disorders, is completely Nα-acetylated in nervous tissue. In this work, building on previous reports, we develop and characterize a bacterial N-terminal acetylation system based on the expression of the yeast N-terminal acetyltransferase B (NatB) complex under the control of the PBAD (L-arabinose-inducible) promoter.

View Article and Find Full Text PDF

α-Synuclein (αSyn) is a key player in the pathogenesis of Parkinson's disease and other synucleinopathies. Here, we report the existence of a novel soluble α-helical conformer of αSyn, obtained through transient interaction with lipid interfaces, and propose dynamic oligomerization as the mechanism underlying its stability. The conformational space of αSyn appears to be highly context-dependent, and lipid bilayers might thus play crucial roles as molecular chaperones in a cellular environment.

View Article and Find Full Text PDF

Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation.

View Article and Find Full Text PDF

α-Synuclein (αS) forms round cytoplasmic inclusions in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Evidence suggests a physiological function of αS in vesicle trafficking and release. In contrast to earlier tenets, recent work indicates that αS normally exists in cells in a dynamic equilibrium between monomers and tetramers/multimers.

View Article and Find Full Text PDF

Copy number mutations implicate excess production of α-synuclein as a possibly causative factor in Parkinson's disease (PD). Using an unbiased screen targeting endogenous gene expression, we discovered that the β2-adrenoreceptor (β2AR) is a regulator of the α-synuclein gene (). β2AR ligands modulate transcription through histone 3 lysine 27 acetylation of its promoter and enhancers.

View Article and Find Full Text PDF

α-Synuclein (αSyn) is a highly abundant neuronal protein whose exact structure and function are under debate. Misfolding and aggregation of this normally soluble, 140-residue polypeptide underlies a group of neurodegenerative disorders called synucleinopathies, including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). The αSyn field has focused increasing attention on the hypotheses that certain aggregates of αSyn may be directly toxic to the neurons in which they arise and/or that aggregates can be released from some neurons and diffuse by undefined mechanisms to other neurons to seed αSyn in the recipient cells, thus propagating neuropathology by a non-cell autonomous process ('pathogenic spread').

View Article and Find Full Text PDF

α-Synuclein (αS) is a highly abundant neuronal protein that aggregates into β-sheet-rich inclusions in Parkinson's disease (PD). αS was long thought to occur as a natively unfolded monomer, but recent work suggests it also occurs normally in α-helix-rich tetramers and related multimers. To elucidate the fundamental relationship between αS multimers and monomers in living neurons, we performed systematic mutagenesis to abolish self-interactions and learn which structural determinants underlie native multimerization.

View Article and Find Full Text PDF

β-Sheet-rich α-synuclein (αS) aggregates characterize Parkinson's disease (PD). αS was long believed to be a natively unfolded monomer, but recent work suggests it also occurs in α-helix-rich tetramers. Crosslinking traps principally tetrameric αS in intact normal neurons, but not after cell lysis, suggesting a dynamic equilibrium.

View Article and Find Full Text PDF

This scientific commentary refers to ‘Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain’, by Roberts (doi: 10.1093/brain/awv040).

View Article and Find Full Text PDF