J Therm Sci Eng Appl
October 2021
An Omnimagnet is an electromagnetic device that enables remote magnetic manipulation of devices such as medical implants and microrobots. It is composed of three orthogonal nested solenoids with a ferromagnetic core at the center. Electrical current within the solenoids leads to undesired temperature increase within the Omnimagnet.
View Article and Find Full Text PDFUnlabelled: Magnetic guidance of cochlear implants is a promising technique to reduce the risk of physical trauma during surgery. In this approach, a magnet attached to the tip of the implant electrode array is guided within the scala tympani using a magnetic field. After surgery, the magnet must be detached from the implant electrode array via localized heating, which may cause thermal trauma, and removed from the scala tympani.
View Article and Find Full Text PDFMagnetic cochlear implant surgery requires removal of a magnet via a heating process after implant insertion, which may cause thermal trauma within the ear. Intra-cochlear heat transfer analysis is required to ensure that the magnet removal phase is thermally safe. The objective of this work is to determine the safe range of input power density to detach the magnet without causing thermal trauma in the ear, and to analyze the effectiveness of natural convection with respect to conduction for removing the excess heat.
View Article and Find Full Text PDFPolymerase Chain Reaction (PCR) is used to amplify a specific segment of DNA through a thermal cycling protocol. The PCR industry is shifting its focus away from macro-scale systems and towards micro-scale devices because: micro-scale sample sizes require less blood from patients, total reaction times are on the order of minutes opposed to hours, and there are cost advantages as many microfluidic devices are manufactured from inexpensive polymers. Some of the fastest PCR devices use continuous flow, but they have all been built of silicon or glass to allow sufficient heat transfer.
View Article and Find Full Text PDFContinuous-flow temperature gradient microfluidics can be used to perform spatial DNA melting analysis. To accurately characterize the melting behavior of PCR amplicon across a spatial temperature gradient, the temperature distribution along the microfluidic channel must be both stable and known. Although temperature change created by micro-flows is often neglected, flow-induced effects can cause significant local variations in the temperature profile within the fluid and the closely surrounding substrate.
View Article and Find Full Text PDF