The most promising alternatives to heart transplantation are left ventricular assist devices and artificial hearts; however, their use has been limited by thrombotic complications. To reduce these, sintered titanium (Ti) surfaces were developed, but thrombosis still occurs in approximately 7.5% of patients.
View Article and Find Full Text PDFAim: Peripheral blood-derived endothelial cells (pBD-ECs) are an attractive tool for cell therapies and tissue engineering, but have been limited by their low isolation yield. We increase pBD-EC yield via administration of the chemokine receptor type 4 antagonist AMD3100, as well as via a diluted whole blood incubation (DWBI).
Materials & Methods: Porcine pBD-ECs were isolated using AMD3100 and DWBI and tested for EC markers, acetylated LDL uptake, growth kinetics, metabolic activity, flow-mediated nitric oxide production and seeded onto titanium tubes implanted into vessels of pigs.
Endothelial cells (ECs) isolated from endothelial progenitor cells in blood have great potential as a therapeutic tool to promote vasculogenesis and angiogenesis and treat cardiovascular diseases. However, current methods to isolate ECs are limited by a low yield with few colonies appearing during isolation. In order to utilize blood-derived ECs for therapeutic applications, a simple method is needed that can produce a high yield of ECs from small volumes of blood without the addition of animal-derived products.
View Article and Find Full Text PDFThe overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig.
View Article and Find Full Text PDF