Axonal degeneration determines the clinical outcome of multiple sclerosis and is thought to result from exposure of denuded axons to immune-mediated damage. Therefore, myelin is widely considered to be a protective structure for axons in multiple sclerosis. Myelinated axons also depend on oligodendrocytes, which provide metabolic and structural support to the axonal compartment.
View Article and Find Full Text PDFA subpopulation of neurons is less vulnerable against iron-induced oxidative stress and neurodegeneration. A key feature of these neurons is a special extracellular matrix composition that forms a perineuronal net (PN). The PN has a high affinity to iron, which suggests an adapted iron sequestration and metabolism of the ensheathed neurons.
View Article and Find Full Text PDFIn this work, we demonstrate that cutting diamond crystals with a laser (532 nm wavelength, 0.5 mJ energy, 200 ns pulse duration at 15 kHz) produced a ≲20 nm thick surface layer with magnetic order at room temperature. We measured the magnetic moment of five natural and six CVD diamond crystals of different sizes, nitrogen contents and surface orientations with a SQUID magnetometer.
View Article and Find Full Text PDFIn Parkinson's disease, the depletion of iron-rich dopaminergic neurons in nigrosome 1 of the substantia nigra precedes motor symptoms by two decades. Methods capable of monitoring this neuronal depletion, at an early disease stage, are needed for early diagnosis and treatment monitoring. Magnetic resonance imaging (MRI) is particularly suitable for this task due to its sensitivity to tissue microstructure and in particular, to iron.
View Article and Find Full Text PDFBackground: Brain iron is an essential as well as a toxic redox active element. Physiological levels are not uniform among the different cell types. Besides the availability of quantitative methods, the knowledge about the brain iron lags behind.
View Article and Find Full Text PDFThe newly designed and constructed electrostatic quadrupole doublet (EQD) at the University of North Texas (UNT) has achieved mass independent focusing of MeV particles to a spot size of 3.3 × 3.5 m.
View Article and Find Full Text PDFPerineuronal nets (PNs) are a specialized form of brain extracellular matrix, consisting of negatively charged glycosaminoglycans, glycoproteins and proteoglycans in the direct microenvironment of neurons. Still, locally immobilized charges in the tissue have not been accessible so far to direct observations and quantifications. Here, we present a new approach to visualize and quantify fixed charge-densities on brain slices using a focused proton-beam microprobe in combination with ionic metallic probes.
View Article and Find Full Text PDFWe report on the implementation of a compact multi-detector fully digital spectrometer and data acquisition system at a nuclear microprobe for ion beam analysis and imaging. The spectrometer design allows for system scalability with no restriction on the number of detectors. It consists of four-channel high-speed digitizer modules for detector signal acquisition and one low-speed digital-to-analog converter (DAC) module with two DAC channels and additional general purpose inputs∕outputs to control ion beam scanning and data acquisition.
View Article and Find Full Text PDFIn several brain regions, a subpopulation of neurons exists being characterized by the expression of a peculiar form of extracellular matrix, a so-called perineuronal net (PNN). We have previously shown that the PNN can bind large amounts of iron due to its polyanionic charge. Because free iron can generate reactive oxygen species thus being potentially toxic, the PNN may have a protective function by "scavenging" this free iron.
View Article and Find Full Text PDFComputed tomography (CT) was applied to sets of Scanning Transmission Ion Microscopy (STIM) projections recorded at the LIPSION ion beam laboratory (Leipzig) in order to visualize the 3D-mass distribution in several specimens. Examples for a test structure (copper grid) and for biological specimens (cartilage cells, cygospore) are shown. Scanning Transmission Micro-Tomography (STIM-T) at a resolution of 260 nm was demonstrated for the first time.
View Article and Find Full Text PDF