We report the occurrence of spontaneous synchronizing events between two semiconductor lasers, when the emission of a frequency- and intensity-chaotic driving laser is unidirectionally coupled into a second stable response laser. The driving laser is driven chaotic by delayed optical feedback, the response laser is a device-identical solitary laser. We demonstrate the onset of an episodic synchronization regime when the two lasers are spectrally detuned with respect to each other.
View Article and Find Full Text PDFWe demonstrate the influence of vectorial coupling on the synchronization behavior of complex systems. We study two semiconductor lasers subject to delayed optical feedback which are unidirectionally coherently coupled via their optical fields. Our experimental and numerical results demonstrate a characteristic synchronization scenario in dependence on the relative feedback phase leading cyclically from chaos synchronization to almost uncorrelated states, and back to chaos synchronization.
View Article and Find Full Text PDF