Publications by authors named "Tilman Esslinger"

The formation of dark states is an important concept in quantum sciences, but its compatibility with strong interparticle interactions-for example, in a quantum degenerate gas-is hardly explored. Here, we realize a dark state in one of the spins of a two-component, resonantly interacting Fermi gas using a Λ system within the D_{2} transitions of ^{6}Li at high magnetic field. The dark state is created in a micrometer-sized region within a one-dimensional channel connecting two superfluid reservoirs.

View Article and Find Full Text PDF

The nature of particle and entropy flow between two superfluids is often understood in terms of reversible flow carried by an entropy-free, macroscopic wavefunction. While this wavefunction is responsible for many intriguing properties of superfluids and superconductors, its interplay with excitations in non-equilibrium situations is less understood. Here we observe large concurrent flows of both particles and entropy through a ballistic channel connecting two strongly interacting fermionic superfluids.

View Article and Find Full Text PDF

The transport properties of gapless edge modes at boundaries between topologically distinct domains are of fundamental and technological importance. We experimentally studied long-distance quantized Hall drifts in a harmonically confined topological pump of ultracold fermionic atoms. We found that quantized drifts halt and reverse their direction when the atoms reach a critical slope of the confining potential, revealing the presence of a topological boundary.

View Article and Find Full Text PDF

Engineering pairs of massive particles that are simultaneously correlated in their external and internal degrees of freedom is a major challenge, yet essential for advancing fundamental tests of physics and quantum technologies. In this Letter, we experimentally demonstrate a mechanism for generating pairs of atoms in well-defined spin and momentum modes. This mechanism couples atoms from a degenerate Bose gas via a superradiant photon-exchange process in an optical cavity, producing pairs via a single channel or two discernible channels.

View Article and Find Full Text PDF

We consider theoretically a driven-dissipative quantum many-body system consisting of an atomic ensemble in a single-mode optical cavity as described by the open Tavis-Cummings model. In this hybrid light-matter system, the interplay between coherent and dissipative processes leads to superradiant pulses with a buildup of strong correlations, even for systems comprising hundreds to thousands of particles. A central feature of the mean-field dynamics is a self-reversal of two spin degrees of freedom due to an underlying time-reversal symmetry, which is broken by quantum fluctuations.

View Article and Find Full Text PDF

Geometric properties of wave functions can explain the appearance of topological invariants in many condensed-matter and quantum systems. For example, topological invariants describe the plateaux observed in the quantized Hall effect and the pumped charge in its dynamic analogue-the Thouless pump. However, the presence of interparticle interactions can affect the topology of a material, invalidating the idealized formulation in terms of Bloch waves.

View Article and Find Full Text PDF

We measure superfluid transport of strongly interacting fermionic lithium atoms through a quantum point contact with local, spin-dependent particle loss. We observe that the characteristic non-Ohmic superfluid transport enabled by high-order multiple Andreev reflections transitions into an excess Ohmic current as the dissipation strength exceeds the superfluid gap. We develop a model with mean-field reservoirs connected via tunneling to a dissipative site.

View Article and Find Full Text PDF

Pumps are transport mechanisms in which direct currents result from a cyclic evolution of the potential. As Thouless showed, the pumping process can have topological origins, when considering the motion of quantum particles in spatially and temporally periodic potentials. However, the periodic evolution that drives these pumps has always been assumed to be imparted from outside, as has been the case in the experimental systems studied so far.

View Article and Find Full Text PDF

Constructing new topological materials is of vital interest for the development of robust quantum applications. However, engineering such materials often causes technological overhead, such as large magnetic fields, spin-orbit coupling, or dynamical superlattice potentials. Simplifying the experimental requirements has been addressed on a conceptual level-by proposing to combine simple lattice structures with Floquet engineering-but there has been no experimental implementation.

View Article and Find Full Text PDF

Three-level atomic systems coupled to light have the capacity to host dark states. We study a system of V-shaped three-level atoms coherently coupled to the two quadratures of a dissipative cavity. The interplay between the atomic level structure and dissipation makes the phase diagram of the open system drastically different from the closed one.

View Article and Find Full Text PDF

We report on the experimental realization and detection of dynamical currents in a spin-textured lattice in momentum space. Collective tunneling is implemented via cavity-assisted Raman scattering of photons by a spinor Bose-Einstein condensate into an optical cavity. The photon field inducing the tunneling processes is subject to cavity dissipation, resulting in effective directional dynamics in a non-Hermitian setting.

View Article and Find Full Text PDF

Dissipative and unitary processes define the evolution of a many-body system. Their interplay gives rise to dynamical phase transitions and can lead to instabilities. In this study, we observe a nonstationary state of chiral nature in a synthetic many-body system with independently controllable unitary and dissipative couplings.

View Article and Find Full Text PDF

We implement a microscopic spin filter for cold fermionic atoms in a quantum point contact (QPC) and create fully spin-polarized currents while retaining conductance quantization. Key to our scheme is a near-resonant optical tweezer inducing a large effective Zeeman shift inside the QPC while its local character limits dissipation. We observe a renormalization of this shift due to interactions of only a few atoms in the QPC.

View Article and Find Full Text PDF

We perform an ab initio comparison between nonequilibrium dynamical mean-field theory and optical lattice experiments by studying the time evolution of double occupations in the periodically driven Fermi-Hubbard model. For off-resonant driving, the range of validity of a description in terms of an effective static Hamiltonian is determined and its breakdown due to energy absorption close to resonance is demonstrated. For near-resonant driving, we investigate the response to a change in driving amplitude and discover an asymmetric excitation spectrum with respect to the detuning.

View Article and Find Full Text PDF

We study the dynamics and timescales of a periodically driven Fermi-Hubbard model in a three-dimensional hexagonal lattice. The evolution of the Floquet many-body state is analyzed by comparing it to an equivalent implementation in undriven systems. The dynamics of double occupancies for the near- and off-resonant driving regime indicate that the effective Hamiltonian picture is valid for several orders of magnitude in modulation time.

View Article and Find Full Text PDF

We report on coupled heat and particle transport measurements through a quantum point contact (QPC) connecting two reservoirs of resonantly interacting, finite temperature Fermi gases. After heating one of them, we observe a particle current flowing from cold to hot. We monitor the temperature evolution of the reservoirs and find that the system evolves after an initial response into a nonequilibrium steady state with finite temperature and chemical potential differences across the QPC.

View Article and Find Full Text PDF

Controlling matter to simultaneously support coupled properties is of fundamental and technological importance (for example, in multiferroics or high-temperature superconductors). However, determining the microscopic mechanisms responsible for the simultaneous presence of different orders is difficult, making it hard to predict material phenomenology or modify properties. Here, using a quantum gas to engineer an adjustable interaction at the microscopic level, we demonstrate scenarios of competition, coexistence and mutual enhancement of two orders.

View Article and Find Full Text PDF

We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity.

View Article and Find Full Text PDF

Periodic driving can be used to control the properties of a many-body state coherently and to realize phases that are not accessible in static systems. For example, exposing materials to intense laser pulses makes it possible to induce metal-insulator transitions, to control magnetic order and to generate transient superconducting behaviour well above the static transition temperature. However, pinning down the mechanisms underlying these phenomena is often difficult because the response of a material to irradiation is governed by complex, many-body dynamics.

View Article and Find Full Text PDF

Higgs and Goldstone modes are collective excitations of the amplitude and phase of an order parameter that is related to the breaking of a continuous symmetry. We directly studied these modes in a supersolid quantum gas created by coupling a Bose-Einstein condensate to two optical cavities, whose field amplitudes form the real and imaginary parts of a U(1)-symmetric order parameter. Monitoring the cavity fields in real time allowed us to observe the dynamics of the associated Higgs and Goldstone modes and revealed their amplitude and phase nature.

View Article and Find Full Text PDF

We present a scanning probe microscopy technique for spatially resolving transport in cold atomic gases, in close analogy with scanning gate microscopy in semiconductor physics. The conductance of a quantum point contact connected to two atomic reservoirs is measured in the presence of a tightly focused laser beam acting as a local perturbation that can be precisely positioned in space. By scanning its position and recording the subsequent variations of conductance, we retrieve a high-resolution map of transport through a quantum point contact.

View Article and Find Full Text PDF

In recent years, the ability of cold atom experiments to explore condensed-matter-related questions has dramatically progressed. Transport experiments, in particular, have expanded to the point in which conductance and other transport coefficients can now be measured in a way that is directly analogous to solid-state physics, extending cold-atom-based quantum simulations into the domain of quantum electronic devices. In this topical review, we describe the transport experiments performed with cold gases in the two-terminal configuration, with an emphasis on the specific features of cold atomic gases compared to solid-state physics.

View Article and Find Full Text PDF

The concept of a supersolid state combines the crystallization of a many-body system with dissipationless flow of the atoms from which it is built. This quantum phase requires the breaking of two continuous symmetries: the phase invariance of a superfluid and the continuous translational invariance to form the crystal. Despite having been proposed for helium almost 50 years ago, experimental verification of supersolidity remains elusive.

View Article and Find Full Text PDF

We study particle and spin transport in a single-mode quantum point contact, using a charge neutral, quantum degenerate Fermi gas with tunable, attractive interactions. This yields the spin and particle conductance of the point contact as a function of chemical potential or confinement. The measurements cover a regime from weak attraction, where quantized conductance is observed, to the resonantly interacting superfluid.

View Article and Find Full Text PDF

Insights into complex phenomena in quantum matter can be gained from simulation experiments with ultracold atoms, especially in cases where theoretical characterization is challenging. However, these experiments are mostly limited to short-range collisional interactions; recently observed perturbative effects of long-range interactions were too weak to reach new quantum phases. Here we experimentally realize a bosonic lattice model with competing short- and long-range interactions, and observe the appearance of four distinct quantum phases--a superfluid, a supersolid, a Mott insulator and a charge density wave.

View Article and Find Full Text PDF