Publications by authors named "Tillmann Kubis"

Twist angle is a relevant design and control component for the piezoelectric coefficients of van der Waals (vdW) heterostructures. This theoretical work assesses in high detail the impact of the twist angle on the piezoelectricity of two-dimensional (2D) heterobilayer systems. We expand the density-functional based tight-binding method to predict the piezoelectric coefficients of twisted and corrugated 2D heterobilayer structures with more than 1000 atoms.

View Article and Find Full Text PDF

Organic reactions in microdroplets can be orders of magnitude faster than their bulk counterparts. We hypothesize that solvation energy differences between bulk and interface play a key role in the intrinsic rate constant increase and test the hypothesis with explicit solvent calculations. We demonstrate for both the protonated phenylhydrazine reagent and the hydrazone transition state (TSB) that molecular orientations which place the charge sites at the surface confer high energy.

View Article and Find Full Text PDF

A characteristic feature of quantum cascade lasers is their unipolar carrier transport. We exploit this feature and realize nominally symmetric active regions for terahertz quantum cascade lasers, which should yield equal performance with either bias polarity. However, symmetric devices exhibit a strongly bias polarity dependent performance due to growth direction asymmetries, making them an ideal tool to study the related scattering mechanisms.

View Article and Find Full Text PDF

Device-performances of 3.7 THz indirect-pumping quantum-cascade lasers are demonstrated in an InGaAs/InAlAs material system grown by metal-organic vapor-phase epitaxy. The lasers show a low threshold-current-density of ~420 A/cm2 and a peak output power of ~8 mW at 7 K, no sign of parasitic currents with recourse to well-designed coupled-well injectors in the indirect pump scheme, and a maximum operating temperature of Tmax ~100 K.

View Article and Find Full Text PDF