Eur Arch Otorhinolaryngol
November 2024
Introduction: For experimental studies on sound transfer in the middle ear, it may be advantageous to perform the measurements without the inner ear. In this case, it is important to know the influence of inner ear impedance on the middle ear transfer function (METF). Previous studies provide contradictory results in this regard.
View Article and Find Full Text PDFObjectives: The active middle ear implant, Vibrant Soundbridge (VSB), can be implanted with a variety of couplers. Hearing outcome after implantation has been investigated in both temporal bone (TB) experiments and patient studies, but the relationship between experimental and clinical data is still weak in the literature. Therefore, experimental data from TB experiments should be compared with patient data in a retrospective study, in which the floating mass transducer is used with couplers of the third generation.
View Article and Find Full Text PDFWe propose a novel system based on the Floating Mass Transducer (FMT) to be used as the active component of a fully implantable, Vibrant Soundbridge-like middle ear implant. The new system replaces the external microphone used in the currently available design with an implantable piezoelectric sensor that is inserted into the incudostapedial joint and picks up the vibrations transmitted to the long process of the incus. The FMT is coupled to the round window of the cochlea.
View Article and Find Full Text PDFDynamic pressure at the tympanic membrane is transformed and subsequently transferred through the ossicular chain in the form of forces and moments. The forces are primarily transferred to the inner ear. They are transferred partly to the stapedial annular ligament which exhibits non-linear behavior and stiffens for larger static forces.
View Article and Find Full Text PDFA fully implantable hearing aid is introduced which is a combined sensor-actuator-transducer designed for insertion into the incudostapedial joint gap (ISJ). The active elements each consist of a thin titanium membrane with an applied piezoelectric single crystal. The effectiveness of the operating principle is verified in a temporal bone study.
View Article and Find Full Text PDFImplantable assembly components that are biocompatible and highly miniaturized are an important objective for hearing aid development. We introduce a mechanical transducer, which could be suitable as part of a prospective fully-implantable hearing aid. The transducer comprises a sensor and an actuator unit in one housing, located in the joint gap between the middle ear ossicles, the incus and stapes.
View Article and Find Full Text PDF