Background: Nitrogen fertiliser is the major input and cost for wheat production, being required to support the development of the canopy to maximise yield and for the synthesis of the gluten proteins that are necessary for breadmaking. Consequently, current high-yielding cultivars require the use of nitrogen fertilisation levels above the yield optimum to achieve the grain protein content needed for breadmaking. This study aimed to reduce this requirement by identifying traits that allow the use of lower levels of nitrogen fertiliser to produce wheat for breadmaking.
View Article and Find Full Text PDFFive cultivars of bread wheat and spelt and three of emmer were grown in replicate randomised field trials on two sites for two years with 100 and 200 kg nitrogen fertiliser per hectare, reflecting low input and intensive farming systems. Wholemeal flours were analysed for components that are suggested to contribute to a healthy diet. The ranges of all components overlapped between the three cereal types, reflecting the effects of both genotype and environment.
View Article and Find Full Text PDFBackground And Aims: The C4Urochloa species (syn. Brachiaria) and Megathyrsus maximus (syn. Panicum maximum) are used as pasture for cattle across vast areas in tropical agriculture systems in Africa and South America.
View Article and Find Full Text PDF(including , and some ) tropical grasses are native to Africa and are now, after selection and breeding, planted worldwide, particularly in South America, as important forages with huge potential for further sustainable improvement and conservation of grasslands. We aimed to develop an optimized approach to determine ploidy of germplasm collection of this tropical forage grass group using dried leaf material, including approaches to collect, dry and preserve plant samples for flow cytometry analysis. Our methods enable robust identification of ploidy levels (coefficient of variation of G0/G1 peaks, CV, typically <5%).
View Article and Find Full Text PDFA combination of lipidomics, transcriptomics and bioimaging has been used to study triacylglycerol synthesis and deposition in the developing starchy endosperm of wheat. The content of TAG increased between 14 and 34 days after anthesis, from 50 to 115 mg/100 g dry wt and from about 35 to 175 mg/100 g dry wt in two experiments. The major fatty acids were C16 (palmitic C16:0 and palmitoleic C16:1) and C18 (stearic C18:0, oleic C18:1, linoleic C18:2 and linolenic C18:3), with unsaturated fatty acids accounting for about 75-80% of the total throughout development.
View Article and Find Full Text PDFThere is a well-established negative relationship between the yield and the concentration of protein in the mature wheat grain. However, some wheat genotypes consistently deviate from this relationship, a phenomenon known as Grain Protein Deviation (GPD). Positive GPD is therefore of considerable interest in relation to reducing the requirement for nitrogen fertilization for producing wheat for breadmaking.
View Article and Find Full Text PDFWheat contains abundant xylan in cell walls of all tissues, but in endosperm, there is an unusual form of xylan substituted only by arabinose (arabinoxylan; AX) that has long chains and low levels of feruloylation, a fraction of which is extractable in water (WE-AX). WE-AX acts as soluble dietary fibre but also gives rise to viscous extracts from grain, a detrimental trait for some non-food uses of wheat. Here, we show that a glycosyl transferase family 43 wheat gene abundantly expressed in endosperm complements the Arabidopsis irx9 mutant and so name the three homoeologous genes TaIRX9b.
View Article and Find Full Text PDFBackground: High post-anthesis (p.a) temperatures reduce mature grain weights in wheat and other cereals. However, the causes of this reduction are not entirely known.
View Article and Find Full Text PDFThirty-nine UK adapted wheat cultivars dating from between 1790 and 2012 were grown in replicated randomised field trials for three years, milled, and white flour analysed for the contents of dietary fibre components (arabinoxylan and β-glucan) and polar metabolites (sugars, amino acids, organic acids, choline and betaine) to determine whether the composition had changed due to the effects of intensive breeding. The concentrations of components varied between study years, indicating strong effects of environment. Nevertheless, some trends were observed, with the concentrations of arabinoxylan fibre and soluble sugars (notably sucrose, maltose and fructose) increasing and most amino acids (including asparagine which is the precursor of acrylamide formed during processing) decreasing between the older and newer types.
View Article and Find Full Text PDFDietary fibre (DF) has multiple health benefits and wheat grains are major sources of DF for human health. However, DF is depleted in white wheat flour which is more widely consumed than wholegrain. The major DF component in white flour is the cell wall polysaccharide arabinoxylan (AX).
View Article and Find Full Text PDFReactive oxygen species (ROS) and low molecular weight antioxidants, such as glutathione and ascorbate, are powerful signalling molecules that participate in the control of plant growth and development, and modulate progression through the mitotic cell cycle. Enhanced ROS accumulation or low levels of ascorbate or glutathione cause the cell cycle to arrest and halt progression especially through the G1 checkpoint. Plant cell suspension cultures have proved to be particularly useful tools for the study of cell cycle regulation.
View Article and Find Full Text PDFMethyl-jasmonate induces large increases in p-coumarate linked to arabinoxylan in Brachypodium and in abundance of GT61 and BAHD family transcripts consistent with a role in synthesis of this linkage. Jasmonic acid (JA) signalling is required for many stress responses in plants, inducing large changes in the transcriptome, including up-regulation of transcripts associated with lignification. However, less is known about the response to JA of grass cell walls and the monocot-specific features of arabinoxylan (AX) synthesis and acylation by ferulic acid (FA) and para-coumaric acid (pCA).
View Article and Find Full Text PDFFeruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl-CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX feruloylation.
View Article and Find Full Text PDFThe cell walls of wheat (Triticum aestivum) starchy endosperm are dominated by arabinoxylan (AX), accounting for 65% to 70% of the polysaccharide content. Genes within two glycosyl transferase (GT) families, GT43 (IRREGULAR XYLEM9 [IRX9] and IRX14) and GT47 (IRX10), have previously been shown to be involved in the synthesis of the xylan backbone in Arabidopsis, and close homologs of these have been implicated in the synthesis of xylan in other species. Here, homologs of IRX10 TaGT47_2 and IRX9 TaGT43_2, which are highly expressed in wheat starchy endosperm cells, were suppressed by RNA interference (RNAi) constructs driven by a starchy endosperm-specific promoter.
View Article and Find Full Text PDFThe cell walls of grasses such as wheat, maize, rice, and sugar cane, contain large amounts of ferulate that is ester-linked to the cell wall polysaccharide glucuronoarabinoxylan (GAX). This ferulate is considered to limit the digestibility of polysaccharide in grass biomass as it forms covalent linkages between polysaccharide and lignin components. Candidate genes within a grass-specific clade of the BAHD acyl-coA transferase superfamily have been identified as being responsible for the ester linkage of ferulate to GAX.
View Article and Find Full Text PDFXylan, a hemicellulosic component of the plant cell wall, is one of the most abundant polysaccharides in nature. In contrast to dicots, xylan in grasses is extensively modified by α-(1,2)- and α-(1,3)-linked arabinofuranose. Despite the importance of grass arabinoxylan in human and animal nutrition and for bioenergy, the enzymes adding the arabinosyl substitutions are unknown.
View Article and Find Full Text PDFThe transcriptome of the developing starchy endosperm of hexaploid wheat (Triticum aestivum) was determined using RNA-Seq isolated at five stages during grain fill. This resource represents an excellent way to identify candidate genes responsible for the starchy endosperm cell wall, which is dominated by arabinoxylan (AX), accounting for 70% of the cell wall polysaccharides, with 20% (1,3;1,4)-β-d-glucan, 7% glucomannan, and 4% cellulose. A complete inventory of transcripts of 124 glycosyltransferase (GT) and 72 glycosylhydrolase (GH) genes associated with cell walls is presented.
View Article and Find Full Text PDFCellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism.
View Article and Find Full Text PDFCellular redox homeostasis and signalling are important in progression of the eukaryotic cell cycle. In animals, the low-molecular-weight thiol tripeptide glutathione (GSH) is recruited into the nucleus early in the cell proliferation cycle. To determine whether a similar process occurs in plants, we studied cell proliferation in Arabidopsis thaliana.
View Article and Find Full Text PDFThe responses of C(3) plants to rising atmospheric CO(2) levels are considered to be largely dependent on effects exerted through altered photosynthesis. In contrast, the nature of the responses of C(4) plants to high CO(2) remains controversial because of the absence of CO(2) -dependent effects on photosynthesis. In this study, the effects of atmospheric CO(2) availability on the transcriptome, proteome and metabolome profiles of two ranks of source leaves in maize (Zea mays L.
View Article and Find Full Text PDF(1,3;1,4)-beta-d-Glucan (beta-glucan) accounts for 20% of the total cell walls in the starchy endosperm of wheat (Triticum aestivum) and is an important source of dietary fiber for human nutrition with potential health benefits. Bioinformatic and array analyses of gene expression profiles in developing caryopses identified the CELLULOSE SYNTHASE-LIKE F6 (CSLF6) gene as encoding a putative beta-glucan synthase. RNA interference constructs were therefore designed to down-regulate CSLF6 gene expression and expressed in transgenic wheat under the control of a starchy endosperm-specific HMW subunit gene promoter.
View Article and Find Full Text PDFPyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools.
View Article and Find Full Text PDFPhotosynthesis and associated signalling are influenced by the dorso-ventral properties of leaves. The degree of adaxial/abaxial symmetry in stomatal numbers, photosynthetic regulation with respect to light orientation and the total section areas of the bundle sheath (BS) cells and the surrounding mesophyll (M) cells on the adaxial and abaxial sides of the vascular bundles were compared in two C(4)[Zea mays (maize) and Paspalum dilatatum] and one C(3)[Triticum turgidum (Durum wheat)] monocotyledonous species. The C(3) leaves had a higher degree of dorso-ventral symmetry than the C(4) leaves.
View Article and Find Full Text PDF