Publications by authors named "Tilen Potisk"

Significant changes in the acoustic response of a fluid can be induced by the suspension of tiny, subwavelength-size discrete micro-oscillators in the fluid. We investigate how the topological properties of these oscillators, such as the mass distribution and connectivity of the oscillator parts, influence the effective dynamic density and compressibility of the fluid in which they are embedded. We demonstrate a superior, metamaterial-like response of the suspension when using micro-oscillators with a high density of low-frequency modes.

View Article and Find Full Text PDF

In this work, we demonstrate selected optimization changes in the simple design of filtration masks to increase particle removal efficiency (PRE) and filter quality factor by combining experiments and numerical modeling. In particular, we focus on single-layer filters fabricated from uniform thickness fibers and double-layer filters consisting of a layer of highly permeable thick fibers as a support and a thin layer of filtering electrospun nanofibers. For single-layer filters, we demonstrate performance improvement in terms of the quality factor by optimizing the geometry of the composition.

View Article and Find Full Text PDF

We investigate macroscopic two-fluid effects in magnetorheological fluids generalizing a one-fluid model studied before. In the bulk of the paper we use a model in which the carrier fluid, with density ρ_{1}, moves with velocity v_{1}, while the magnetic component (density ρ_{2}) and, therefore, the magnetization and the magnetic-field-induced relaxing strain field move with velocity v_{2}. In the framework of macroscopic dynamics we find, in particular, reversible dynamic and dissipative cross-coupling terms between the magnetization and the velocity difference.

View Article and Find Full Text PDF

An effective macroscopic model of magnetorheological fluids in the viscoelastic regime is proposed. Under the application of an external magnetic field, columns of magnetizable particles are formed in these systems. The columns are responsible for solidlike properties, such as the existence of elastic shear modulus and yield stress, and are captured by the strain field, while magnetic properties are described by the magnetization.

View Article and Find Full Text PDF

We investigate the macroscopic dynamics of gels with tetrahedral/octupolar symmetry, which possess in addition a spontaneous permanent magnetization. We derive the corresponding static and dynamic macroscopic equations for a phase, where the magnetization is parallel to one of the improper fourfold tetrahedral symmetry axes. Apart from elastic strains, we take into account relative rotations between the magnetization and the elastic network.

View Article and Find Full Text PDF

We investigate the effects of flow on the dynamics of ferromagnetic nematic liquid crystals. As a model, we study the coupled dynamics of the magnetization, M, the director field, n, associated with the liquid crystalline orientational order, and the velocity field, v. We evaluate how simple shear flow in a ferromagnetic nematic is modified in the presence of small external magnetic fields, and we make experimentally testable predictions for the resulting effective shear viscosity: an increase by a factor of 2 in a magnetic field of about 20 mT.

View Article and Find Full Text PDF

We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M, and the director field, n, associated with the liquid crystalline orientational order.

View Article and Find Full Text PDF

Hydrodynamics of complex fluids with multiple order parameters is governed by a set of dynamic equations with many material constants, of which only some are easily measurable. We present a unique example of a dynamic magneto-optic coupling in a ferromagnetic nematic liquid, in which long-range orientational order of liquid crystalline molecules is accompanied by long-range magnetic order of magnetic nanoplatelets. We investigate the dynamics of the magneto-optic response experimentally and theoretically and find out that it is significantly affected by the dissipative dynamic cross-coupling between the nematic and magnetic order parameters.

View Article and Find Full Text PDF