Publications by authors named "Tildesley M"

Background: Aedes aegypti spread pathogens affecting humans, including dengue, Zika, and yellow fever viruses. Anthropogenic climate change is altering the spatial distribution of Ae aegypti and therefore the locations at risk of vector-borne disease. In addition to climate change, natural climate variability, resulting from internal atmospheric processes and interactions between climate system components (eg, atmosphere-land and atmosphere-ocean interactions), determines climate outcomes.

View Article and Find Full Text PDF

In this study, we investigate the impact of demographic characteristics on Middle East respiratory syndrome coronavirus (MERS-CoV) cases in Saudi Arabia, specifically focusing on the time intervals between symptom onset and key events such as hospitalization, case confirmation, reporting and death. We estimate these intervals using data from 2196 cases occurring between June 2012 and January 2020, partitioning the data into four age groups (0-24 years, 25-49 years, 50-74 years and 75-100 years). The duration from symptom onset to hospitalization varies between age cohorts, ranging from 4.

View Article and Find Full Text PDF

Most mathematical models that assess the vectorial capacity of disease-transmitting insects typically focus on the influence of climatic factors to predict variations across different times and locations, or examine the impact of vector control interventions to forecast their potential effectiveness. We combine features of existing models to develop a novel model for vectorial capacity that considers both climate and vector control. This model considers how vector control tools affect vectors at each stage of their feeding cycle, and incorporates host availability and preference.

View Article and Find Full Text PDF
Article Synopsis
  • Bluetongue virus (BT) affects various livestock species worldwide, causing economic losses and health issues, with most existing epidemiological models based on the BTV-8 outbreak from 2006-2009.
  • The study aims to create a flexible model for predicting BT outbreaks globally and to identify key factors influencing outbreak dynamics for better policy planning.
  • A two-host, two-vector model was developed and analyzed using updated parameters from literature, showing that factors like the infectious period of sheep and cows most significantly affect outbreak length and peak infection levels.
View Article and Find Full Text PDF
Article Synopsis
  • Culicoides biting midges are key vectors for important veterinary viruses like bluetongue and African horse sickness, and their distribution is impacted by climate and environmental changes.
  • This study aimed to model the distribution of two primary Culicoides species using random forest machine learning, analyzing various climate and anthropological factors in South Africa where these diseases are common.
  • The random forest models successfully explained significant variance in Culicoides populations, with cattle density and water vapor pressure identified as the most critical predictors for the two species, outperforming traditional interpolation maps in predictive accuracy.
View Article and Find Full Text PDF

During an infectious disease outbreak, public health policy makers are tasked with strategically implementing interventions whilst balancing competing objectives. To provide a quantitative framework that can be used to guide these decisions, it is helpful to devise a clear and specific objective function that can be evaluated to determine the optimal outbreak response. In this study, we have developed a mathematical modelling framework representing outbreaks of a novel emerging pathogen for which non-pharmaceutical interventions (NPIs) are imposed or removed based on thresholds for hospital occupancy.

View Article and Find Full Text PDF

Total ring depopulation is sometimes used as a management strategy for emerging infectious diseases in livestock, which raises ethical concerns regarding the potential slaughter of large numbers of healthy animals. We evaluated a farm-density-based ring culling strategy to control foot-and-mouth disease (FMD) in the United Kingdom (UK), which may allow for some farms within rings around infected premises (IPs) to escape depopulation. We simulated this reduced farm density, or "target density", strategy using a spatially-explicit, stochastic, state-transition algorithm.

View Article and Find Full Text PDF

Quarantine has been long used as a public health response to emerging infectious diseases, particularly at the onset of an epidemic when the infected proportion of a population remains identifiable and logistically tractable. In theory, the same logic should apply to low-incidence infections; however, the application and impact of quarantine in low prevalence settings appears less common and lacks a formal analysis. Here, we present a quantitative framework using a series of progressively more biologically realistic models of canine rabies in domestic dogs and from dogs to humans, a suitable example system to characterize dynamical changes under varying levels of dog quarantine.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has been characterized by the repeated emergence of genetically distinct virus variants of increased transmissibility and immune evasion compared to pre-existing lineages. In many countries, their containment required the intervention of public health authorities and the imposition of control measures. While the primary role of testing is to identify infection, target treatment, and limit spread (through isolation and contact tracing), a secondary benefit is in terms of surveillance and the early detection of new variants.

View Article and Find Full Text PDF

Lassa fever (Lf) is a viral haemorrhagic disease endemic to West Africa and is caused by the Lassa mammarenavirus. The rodent Mastomys natalensis serves as the primary reservoir and its ecology and behaviour have been linked to the distinct spatial and temporal patterns in the incidence of Lf. Nigeria has experienced an unprecedented epidemic that lasted from January until April of 2018, which has been followed by subsequent epidemics of Lf in the same period every year since.

View Article and Find Full Text PDF

Human behaviour is critical to effective responses to livestock disease outbreaks, especially with respect to vaccination uptake. Traditionally, mathematical models used to inform this behaviour have not taken heterogeneity in farmer behaviour into account. We address this by exploring how heterogeneity in farmers vaccination behaviour can be incorporated to inform mathematical models.

View Article and Find Full Text PDF

African horse sickness is an equine orbivirus transmitted by Culicoides Latreille biting midges. In the last 80 years, it has caused several devastating outbreaks in the equine population in Europe, the Far and Middle East, North Africa, South-East Asia, and sub-Saharan Africa. The disease is endemic in South Africa; however, a unique control area has been set up in the Western Cape where increased surveillance and control measures have been put in place.

View Article and Find Full Text PDF

In British Columbia, Canada, initial growth of the SARS-CoV-2 Delta variant was slower than that reported in other jurisdictions. Delta became the dominant variant (>50% prevalence) within ≈7-13 weeks of first detection in regions within the United Kingdom and United States. In British Columbia, it remained at <10% of weekly incident COVID-19 cases for 13 weeks after first detection on March 21, 2021, eventually reaching dominance after 17 weeks.

View Article and Find Full Text PDF
Article Synopsis
  • Policymakers face challenges in making decisions with limited information and conflicting predictions from different models, especially during crises like the COVID-19 pandemic.
  • A study brought together multiple modeling teams to assess reopening strategies in a mid-sized U.S. county, revealing consistent rankings for interventions despite variations in projection magnitudes.
  • The findings indicated that reopening workplaces could lead to a significant increase in infections, while restrictions could greatly reduce cumulative infections, highlighting the trade-offs between public health and economic activity with no optimal reopening strategy identified.
View Article and Find Full Text PDF

Universities provide many opportunities for the spread of infectious respiratory illnesses. Students are brought together into close proximity from all across the world and interact with one another in their accommodation, through lectures and small group teaching and in social settings. The COVID-19 global pandemic has highlighted the need for sufficient data to help determine which of these factors are important for infectious disease transmission in universities and hence control university morbidity as well as community spillover.

View Article and Find Full Text PDF

Transboundary livestock diseases are a high priority for policy makers because of the serious economic burdens associated with infection. In order to make well informed preparedness and response plans, policy makers often utilize mathematical models to understand possible outcomes of different control strategies and outbreak scenarios. Many of these models focus on the transmission between herds and the overall trajectory of the outbreak.

View Article and Find Full Text PDF

Countries around the world have implemented a series of interventions to contain the pandemic of coronavirus disease (COVID-19), and significant lessons can be drawn from the study of the full transmission dynamics of the disease caused by-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-in the Eastern, Madinah, Makkah, and Riyadh regions of Saudi Arabia, where robust non-pharmaceutical interventions effectively suppressed the local outbreak of this disease. On the basis of 333732 laboratory-confirmed cases, we used mathematical modelling to reconstruct the complete spectrum dynamics of COVID-19 in Saudi Arabia between 2 March and 25 September 2020 over 5 periods characterised by events and interventions. Our model account for asymptomatic and presymptomatic infectiousness, time-varying ascertainable infection rate, and transmission rates.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused considerable morbidity and mortality worldwide. The protection provided by vaccines and booster doses offered a method of mitigating severe clinical outcomes and mortality. However, by the end of 2021, the global distribution of vaccines was highly heterogeneous, with some countries gaining over 90% coverage in adults, whereas others reached less than 2%.

View Article and Find Full Text PDF

Transboundary animal diseases, such as foot and mouth disease (FMD) pose a significant and ongoing threat to global food security. Such diseases can produce large, spatially complex outbreaks. Mathematical models are often used to understand the spatio-temporal dynamics and create response plans for possible disease introductions.

View Article and Find Full Text PDF

In the early stages of the pandemic, Saudi Arabia and other countries in the Arab Gulf region relied on non-pharmaceutical therapies to limit the effect of the pandemic, much like other nations across the world. In comparison to other nations in the area or globally, these interventions were successful at lowering the healthcare burden. This was accomplished via the deterioration of the economy, education, and a variety of other societal activities.

View Article and Find Full Text PDF

Control and mitigation of the COVID-19 pandemic in England has relied on a combination of vaccination and non-pharmaceutical interventions (NPIs). Some of these NPIs are extremely costly (economically and socially), so it was important to relax these promptly without overwhelming already burdened health services. The eventual policy was a Roadmap of four relaxation steps throughout 2021, taking England from lock-down to the cessation of all restrictions on social interaction.

View Article and Find Full Text PDF

The structure of contact networks affects the likelihood of disease spread at the population scale and the risk of infection at any given node. Though this has been well characterized for both theoretical and empirical networks for the spread of epidemics on completely susceptible networks, the long-term impact of network structure on risk of infection with an endemic pathogen, where nodes can be infected more than once, has been less well characterized. Here, we analyze detailed records of the transportation of cattle among farms in Turkey to characterize the global and local attributes of the directed-weighted shipments network between 2007-2012.

View Article and Find Full Text PDF

Mathematical modelling is used during disease outbreaks to compare control interventions. Using multiple models, the best method to combine model recommendations is unclear. Existing methods weight model projections, then rank control interventions using the combined projections, presuming model outputs are directly comparable.

View Article and Find Full Text PDF