Publications by authors named "Tika R Kafle"

The origin of the pseudogap in many strongly correlated materials has been a longstanding puzzle. Here, we present experimental evidence that many-body interactions among small Holstein polarons, i.e.

View Article and Find Full Text PDF

Charge density wave (CDW) order is an emergent quantum phase that is characterized by periodic lattice distortion and charge density modulation, often present near superconducting transitions. Here, we uncover a novel inverted CDW state by using a femtosecond laser to coherently reverse the star-of-David lattice distortion in 1-TaSe. We track the signature of this novel CDW state using time- and angle-resolved photoemission spectroscopy and the time-dependent density functional theory to validate that it is associated with a unique lattice and charge arrangement never before realized.

View Article and Find Full Text PDF

Excited-state electron transfer (ET) across molecules/transition metal dichalcogenide crystal (TMDC) interfaces is a critical process for the functioning of various organic/TMDC hybrid optoelectronic devices. Therefore, it is important to understand the fundamental factors that can facilitate or limit the ET rate. Here it is found that an undesirable combination of the interfacial band offset and the spatial dimensionality of the delocalized electron wave function can significantly slow down the ET process.

View Article and Find Full Text PDF

Monolayer transition-metal dichalcogenide crystals (TMDC) can be combined with other functional materials, such as organic molecules, to form a wide range of heterostructures with tailorable properties. Although a number of works have shown that ultrafast charge transfer (CT) can occur at organic/TMDC interfaces, conditions that would facilitate the separation of interfacial CT excitons into free carriers remain unclear. Here, time-resolved and steady-state photoemission spectroscopy are used to study the potential energy landscape, charge transfer, and exciton dynamics at the zinc phthalocyanine (ZnPc)/monolayer (ML) MoS and ZnPc/bulk MoS interfaces.

View Article and Find Full Text PDF

At organic semiconductor interfaces, an electron and a hole can be bound Coulombically to form an interfacial charge transfer (CT) exciton. It is still under debate how a CT exciton can overcome its strong binding and dissociate into free carriers. Experimentally, capturing the evolution of the CT exciton on time (fs-ps) and length scales (nm) in which the dissociation process occurs is challenging.

View Article and Find Full Text PDF

In organic and low-dimensional materials, electrons and holes are bound together to form excitons. Effective exciton dissociation at interfaces is essential for applications such as photovoltaics and photosensing. Here, we present an interface-sensitive, time-resolved method that utilizes graphene field effect transistor as an electric-field sensor to measure the charge separation dynamics and yield at donor-acceptor interfaces.

View Article and Find Full Text PDF

Two-dimensional transition-metal dichalcogenides (TMD) can be combined with other materials such as organic small molecules to form hybrid van der Waals heterostructures. Because of different properties possessed by these two materials, the hybrid interface can exhibit properties that cannot be found in either of the materials. In this work, the zinc phthalocyanine (ZnPc)-molybdenum disulfide (MoS) interface is used as a model system to study the charge transfer at these interfaces.

View Article and Find Full Text PDF

How tightly bound charge transfer (CT) excitons dissociate at organic donor-acceptor interfaces has been a long-standing question in the organic photovoltaics community. Recently, it has been proposed that exciton delocalization reduces the exciton binding energy and promotes exciton dissociation. In order to understand this mechanism, it is critical to resolve the evolution of the exciton's binding energy and coherent size with femtosecond time resolution.

View Article and Find Full Text PDF

The electronic properties of small molecule organic crystals depend heavily on the molecular orientation. For multi-layer organic photovoltaics, it is desirable for the molecules to have a face-on orientation in order to enhance the out-of-plane transport properties. However, it is challenging to grow well-ordered and smooth films with a face-on stacking on conventional substrates such as metals and oxides.

View Article and Find Full Text PDF