In this work, we extend our previously developed compartmental SEIQRD model for sars-cov-2 in Belgium. We introduce sars-cov-2 variants of concern, vaccines, and seasonality in our model, as their addition has proven necessary for modelling sars-cov-2 transmission dynamics during the 2020-2021 covid-19 pandemic in Belgium. The model is geographically stratified into eleven spatial patches (provinces), and a telecommunication dataset provided by Belgium's biggest operator is used to incorporate interprovincial mobility.
View Article and Find Full Text PDFWe analyse and mutually compare time series of covid-19-related data and mobility data across Belgium's 43 arrondissements (NUTS 3). In this way, we reach three conclusions. First, we could detect a decrease in mobility during high-incidence stages of the pandemic.
View Article and Find Full Text PDFObjectives: The COVID-19 pandemic has had a major impact on our society, with drastic policy restrictions being implemented to contain the spread of the severe acute respiratory syndrome coronavirus 2. This study aimed to provide an overview of the available evidence on the cost-effectiveness of various coronavirus disease 2019 policy measures.
Methods: A systematic literature search was conducted in PubMed, Embase, and Web of Science.
We present a compartmental extended SEIQRD metapopulation model for SARS-CoV-2 spread in Belgium. We demonstrate the robustness of the calibration procedure by calibrating the model using incrementally larger datasets and dissect the model results by computing the effective reproduction number at home, in workplaces, in schools, and during leisure activities. We find that schools and home contacts are important transmission pathways for SARS-CoV-2 under lockdown measures.
View Article and Find Full Text PDF