Publications by authors named "Tijia Chen"

Hepatic fibrosis is one kind of liver diseases with a high mortality rate and incidence. The activation and proliferation of hepatic stellate cells (HSCs) is the most fundamental reason of hepatic fibrosis. There are no specific and effective drug delivery carriers for the treatment of hepatic fibrosis at present.

View Article and Find Full Text PDF

In this study, we developed a novel FeO nanoparticles-doxorubicin (DOX)-Hyaluronic acid (HA) nanoparticles on the basis of firstly discovered "formed porous structure" in spontaneously assembled FeO nanoparticles. The Mechanism of Action (MOA) behind this porous DOX-loading cargo was tested and confirmed. A multi-functional FeO-DOX+HA nanoparticle was further constructed by incorporating HA into our system.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), a prevalent brain cancer with high mortality, is resistant to the conventional single-agent chemotherapy. In this study, we employed a combination chemotherapy strategy to inhibit GBM growth and addressed its possible beneficial effects. The synergistic effect of lauroyl-gemcitabine (Gem-C) and honokiol (HNK) was first tested and optimized using U87 cells in vitro.

View Article and Find Full Text PDF

Glioma, one of the most common brain tumors, remains a challenge worldwide. Due to the specific biological barriers such as blood-brain barrier (BBB), cancer stem cells (CSCs), tumor associated macrophages (TAMs), and vasculogenic mimicry channels (VMs), a novel versatile targeting delivery for anti-glioma is in urgent need. Here, we designed a hyaluronic acid (HA) ion-pairing nanoparticle.

View Article and Find Full Text PDF

To achieve tumor-selective drug delivery, various nanocarriers have been explored using either passive or active targeting strategies. Despite the great number of studies published annually in the field, only nanocarriers using approved excipients reach the clinical stage. In our study, two classic nanoscale formulations, nanoemulsion (NE) and liposome (Lipo) were selected for the encapsulation of lycobetaine (LBT).

View Article and Find Full Text PDF

Paclitaxel (PTX) is a chemotherapeutic agent and has been widely used in clinic against human cancer. However, it has limited application in brain tumor treatment due to the poor penetration of blood brain barrier. Local delivery system is a promising carrier of PTX in the treatment of glioma.

View Article and Find Full Text PDF

For glioma as one of the most common and lethal primary brain tumors, the presence of BBB, BBTB, vasculogenic mimicry (VM) channels and tumor-associated macrophages (TAMs) are key biological barriers. Here, a novel drug delivery system which could efficiently deliver drugs to glioma by overcoming multi-barriers and increase antitumor efficacy through multi-therapeutic mechanisms was well developed. In this study, a multi-target peptide nRGD was used to transport across the BBB, mediate tumor penetration and target TAMs.

View Article and Find Full Text PDF

In this study, a selective and sensitive liquid chromatography-electrospray ionization-tandem mass spectrometric method was developed and validated for the determination of lycobetaine in rat plasma. Berberine was selected as the internal standard, and rat plasma samples were pretreated via protein precipitation and further separated on a diamonsil octadecyl-silylated silica column using 0.2% (v/v) aqueous formic acid and methanol as the mobile phase.

View Article and Find Full Text PDF

Finding effective cures against aggressive malignancy remains a major challenge in cancer chemotherapy. Here, we report a "tadpole"-like peptide by covalently conjugating the alanine-alanine-asparagine "tail" residual to the cyclic tumor homing peptide iRGD (CCRGDKGPDC) to afford nRGD, which significantly enhanced tumoricidal effects of doxorubicin, by either co-administered as a physical mixture or as a targeting ligand covalently conjugated to the liposomal carrier. Given twice at an equivalent dose of 5 mg/kg, doxorubicin loaded liposomes modified with nRGD (nRGD-Lipo-Dox) showed excellent antitumor efficacy in 4T1 breast cancer mice, of which 44.

View Article and Find Full Text PDF

A safe and efficient liver targeted PEGylated liposome (PEG-Lip) based on N-terminal myristoylated preS1/21-47 (preS1/21-47(myr)) of hepatitis B virus was successfully developed. The study aimed to elucidate the cellular uptake mechanism of preS1/21-47(myr) modified PEG-Lip (preS1/21-47(myr)-PEG-Lip) in hepatogenic cells and the distribution behavior of preS1/21-47(myr)-PEG-Lip in Vr:CD1 (ICR) mice. The cellular uptake results showed that preS1/21-47(myr)-PEG-Lip was effectively taken up by hepatogenic cells (including primary hepatocytes and liver tumor cells) through a receptor-mediated endocytosis pathway compared with non-hepatogenic cells.

View Article and Find Full Text PDF