The Mediterranean Basin has experienced substantial land use changes as traditional agriculture decreased and population migrated from rural to urban areas, which have resulted in a large forest cover increase. The combination of Landsat time series, providing spectral information, with lidar, offering three-dimensional insights, has emerged as a viable option for the large-scale cartography of forest structural attributes across large time spans. Here we develop and test a comprehensive framework to map forest above ground biomass, canopy cover and forest height in two regions spanning the most representative biomes in the peninsular Spain, Mediterranean (Madrid region) and temperate (Basque Country).
View Article and Find Full Text PDFForest dieback processes linked to drought are expected to increase due to climate warming. Remotely sensed data offer several advantages over common field monitoring methods such as the ability to observe large areas on a systematic basis and monitoring their changes, making them increasingly used to assess changes in forest health. Here we aim to use a combined approximation of fieldwork and remote sensing to explore possible links between forest dieback and land surface phenological and trend variables derived from long Landsat time series.
View Article and Find Full Text PDF