Publications by authors named "Tijana Z Grove"

Designed protein receptors hold diagnostic and therapeutic promise. We now report the design of five consensus leucine-rich repeat proteins (CLRR4-8) based on the LRR domain of nucleotide-binding oligomerization domain (NOD)-like receptors involved in the innate immune system. The CLRRs bind muramyl dipeptide (MDP), a bacterial cell wall component, with micromolar affinity.

View Article and Find Full Text PDF

Natural biopolymers have found success in tissue engineering and regenerative medicine applications. Their intrinsic biocompatibility and biological activity make them well suited for biomaterials development. Specifically, keratin-based biomaterials have demonstrated utility in regenerative medicine applications including bone regeneration, wound healing, and nerve regeneration.

View Article and Find Full Text PDF

Limitations associated with immunoglobulins have motivated the search for novel binding scaffolds. Repeat proteins have emerged as one promising class of scaffolds, but often are limited to binding protein and peptide targets. An exception is the repeat proteins of the immune system, which have in recent years served as an inspiration for binding scaffolds which can bind glycans and other classes of biomolecule.

View Article and Find Full Text PDF

A nano metal-organic-framework (nanoMOF) was employed as a first-of-its kind drug delivery vehicle (DDV) for the photo-controlled release of therapeutics with simultaneous breakdown of the carrier into small molecules.

View Article and Find Full Text PDF

Anisotropic metallic nanoparticles, such as Au and Ag nanoprisms (NPSMs), have received tremendous attention for their application in catalysis, molecular sensing, signal amplification, bioimaging, and therapeutic applications due to their shape-dependent optical and physical properties. Herein, we present a protein-enabled synthetic strategy for the seeded growth of silver and gold NPSMs with low shape polydispersity, narrow size distribution, and tailored plasmonic absorbance. During the initial seed nucleation step, consensus sequence tetratricopeptide repeat (CTPR) proteins are utilized as potent stabilizers to facilitate the formation of planar-twinned Ag seeds.

View Article and Find Full Text PDF

Generation of electric potential upon external stimulus has attracted much attention for the development of highly functional sensors and devices. Herein, we report large-displacement, fast actuation in the self-assembled engineered repeat protein Consensus Tetratricopeptide Repeat protein (CTPR18) materials. The ionic nature of the CTPR18 protein coupled to the long-range alignment upon self-assembly results in the measured conductivity of 7.

View Article and Find Full Text PDF

In recent years, nonconjugated, fluorophore-free organic polymers have emerged as potentially useful light-emitting materials. The fluorescence properties of a novel class of nonconjugated, tert-butyl carboxylate functionalized stilbene-containing alternating copolymers are investigated in this work. These sterically crowded, semi-rigid copolymers exhibit very strong blue fluorescence in organic solvents upon irradiation.

View Article and Find Full Text PDF

In the past two decades, keratin biomaterials have shown impressive results as scaffolds for tissue engineering, wound healing, and nerve regeneration. In addition to its intrinsic biocompatibility, keratin interacts with specific cell receptors eliciting beneficial biochemical cues. However, during extraction from natural sources, such as hair and wool fibers, natural keratins are subject to extensive processing conditions that lead to formation of unwanted by-products.

View Article and Find Full Text PDF

We report the photo-induced degradation of and cargo release from a nanoscale metal-organic framework (nMOF) incorporating photo-isomerizable 4,4'-azobenzenedicarboxylate (AZB) linkers. The structure matches a UiO-type framework where 12 4,4'-azobenzenedicarboxylate moieties are connected to a ZrO(OH) cluster, referred to as UiO-AZB. Due to the incorporation of photo-isomerizable struts, the degradation of UiO-AZB is accelerated by irradiation with white light (1.

View Article and Find Full Text PDF

This final chapter aims to summarize the main conclusions of the book and to point to possible directions for further research in the field of protein design for nanostructural engineering. Even though this research field is still at its infancy, multidisciplinary research efforts in the design of synthetic protein-based nanostructures and functional materials have resulted in significant progress. The chapters in this book cover several selected examples of the most recent advances concerning the use of proteins and peptides as building blocks for the fabrication of architectures and functional nanostructures, assemblies, and materials.

View Article and Find Full Text PDF

Protein-polymer conjugates are of particular interest for nanobiotechnology applications because of the various and complementary roles that each component may play in composite hybrid-materials. This chapter focuses on the design principles and applications of self-assembling protein-polymer conjugate materials. We address the general design methodology, from both synthetic and genetic perspective, conjugation strategies, protein vs.

View Article and Find Full Text PDF

This chapter aims to introduce the main challenges in the field of protein design for engineering of nanostructures and functional materials. First, we introduce proteins and illustrate the key characteristics that open many possibilities for the use of proteins in nanotechnology. Then, we describe the current state of the art of nanopatterning techniques and the actual needs of the emerging field of nanotechnology to develop new tools in order to achieve precise control and manipulation of elements at the nanoscale.

View Article and Find Full Text PDF

Gold nanotriangles (Au NTs) with tunable edge length were synthesized via a green chemical route in the presence of the designed consensus sequence tetratricopeptide repeat (CTPR) protein, halide anions (Br(-)) and CTPR-stabilized Ag seeds. The well-defined morphologies, tailored plasmonic absorbance from visible-light to the near infrared (NIR) region, colloidal stability and biocompatibility are attributed to the synergistic action of CTPR, halide ions, and CTPR-stabilized Ag seeds.

View Article and Find Full Text PDF

In this work, we present a modified seed-mediated synthetic strategy for the growth of silver nanoprisms with low shape polydispersity, narrow size distribution and tailored plasmonic absorbance. During the seed nucleation step, consensus sequence tetratricopeptide repeat (CTPR) proteins are utilized as potent stabilizers to facilitate the formation of planar-twinned Ag seeds. Ag nanoprisms were produced in high yield in a growth solution containing ascorbic acid and CTPR-stabilized Ag seeds.

View Article and Find Full Text PDF

Advances in protein engineering tools, both computational and experimental, has afforded many new protein structures and functions. Here, we present a snapshot of repeat-protein engineering efforts towards new, versatile, alternative binding scaffolds for use in analytical sensors and as imaging agents. Analytical assays, sensors and imaging agents based on the direct binding of analyte are increasingly important for research and diagnostics in medicine, food safety, and national security.

View Article and Find Full Text PDF

Complex hierarchical structures provide beneficial structure-property relationships that can be exploited for a variety of applications in engineering and biomedical fields. Here we report on molecular organization and resulting mechanical properties of self-assembled designed repeat-protein films. Wide-angle X-ray diffraction indicates the designed 18-repeat concensus tetratricopeptide repeat protein (CTPR18) orients normal to the casting surface, while small-angle measurements and electron microscopy show a through-plane transversely aligned laminar sheet-like morphology.

View Article and Find Full Text PDF

Repeat proteins have recently emerged as especially well-suited alternative binding scaffolds due to their modular architecture and biophysical properties. Here we present the design of a scaffold based on the consensus sequence of the leucine rich repeat (LRR) domain of the NOD family of cytoplasmic innate immune system receptors. Consensus sequence design has emerged as a protein design tool to create de novo proteins that capture sequence-structure relationships and interactions present in nature.

View Article and Find Full Text PDF

Fundamental advances in biotechnology, medicine, environment, electronics and energy require methods for precise control of spatial organization at the nanoscale. Assemblies that rely on highly specific biomolecular interactions are an attractive approach to form materials that display novel and useful properties. Here, we report on assembly of films from the designed, rod-shaped, superhelical, consensus tetratricopeptide repeat protein (CTPR).

View Article and Find Full Text PDF

In this review we highlight recent accomplishments in the design of materials from proteins and peptides. Examples include hydrogels made from aggregating designed β-hairpin peptides, whose physical properties respond to small changes in the amino acid composition of the peptide; materials that combine different segments of natural elastomeric proteins - such as elastin, resilin, silk fibroin whose bulk properties are dictated in unanticipated ways by their composition; and hydrogels formed by strings or arrays of protein modules, which are cross-linked by multivalent versions of their peptide ligands, and which may exhibit exquisite stimuli-responsive behavior. The suitability of the unique properties of such new materials for practical applications is also considered.

View Article and Find Full Text PDF

The modular nature of repeat proteins makes them a versatile platform for the design of smart materials with predetermined properties. Here, we present a general strategy for combining protein modules with specified stability and function into arrays for the assembly of stimuli-responsive gels. We have designed tetratricopeptide repeat (TPR) arrays which contain peptide-binding modules that specify the strength and reversibility of network crosslinking in combination with spacer modules that specify crosslinking geometry and overall stability of the array.

View Article and Find Full Text PDF

Cytochromes c(6) and f react by three et mechanisms under similar conditions. We report temperature and viscosity effects on the protein docking and kinetics of (3)Zncyt c(6)+cyt f(III)→Zncyt c(6)(+)+cyt f(II). At 0.

View Article and Find Full Text PDF

Smart gels have a variety of applications, including tissue engineering and controlled drug delivery. Here we present a modular, bottom-up approach that permits the creation of protein-based smart gels with encoded morphology, functionality, and responsiveness to external stimuli. The properties of these gels are encoded by the proteins from which they are synthesized.

View Article and Find Full Text PDF

We present the results of combining design and selection to remodel a protein-peptide binding interface, using the peptide PTIEEVD and the TPR1 module interaction as our test case. We initially used the program Rosetta to interrogate possible TPR1 sequences compatible with binding the peptide PTIEEVD. Based on these results, we screened a small library of TPR1 variants, using a split GFP fluorescent assay to identify proteins that are able to bind to the PTIEEVD peptide.

View Article and Find Full Text PDF

Repeat proteins contain tandem arrays of small structural motifs. As a consequence of this architecture, they adopt non-globular, extended structures that present large, highly specific surfaces for ligand binding. Here we discuss recent advances toward understanding the functional role of this unique modular architecture.

View Article and Find Full Text PDF