Publications by authors named "Tijana G Del Rio"

The North Temperate Lakes Long-Term Ecological Research (NTL-LTER) program has been extensively used to improve understanding of how aquatic ecosystems respond to environmental stressors, climate fluctuations, and human activities. Here, we report on the metagenomes of samples collected between 2000 and 2019 from Lake Mendota, a freshwater eutrophic lake within the NTL-LTER site. We utilized the distributed metagenome assembler MetaHipMer to coassemble over 10 terabases (Tbp) of data from 471 individual Illumina-sequenced metagenomes.

View Article and Find Full Text PDF

Background: Rock-dwelling microorganisms are key players in ecosystem functioning of Antarctic ice free-areas. Yet, little is known about their diversity and ecology, and further still, viruses in these communities have been largely unexplored despite important roles related to host metabolism and nutrient cycling. To begin to address this, we present a large-scale viral catalog from Antarctic rock microbial communities.

View Article and Find Full Text PDF

The addition of glucose to soil has long been used to study the metabolic activity of microbes in soil; however, the response of the microbial ecophysiology remains poorly characterized. To address this, we sequenced the metagenomes and metatranscriptomes of glucose-amended soil microbial communities in a laboratory incubation.

View Article and Find Full Text PDF

Background: Currently, much is unknown about the taxonomic diversity and the mechanisms of methane metabolism in the Florida Everglades ecosystem. The Loxahatchee National Wildlife Refuge is a section of the Florida Everglades that is almost entirely unstudied in regard to taxonomic profiling. This short report analyzes the metagenome of soil samples from this Refuge to investigate the predominant taxa, as well as the abundance of genes involved in environmentally significant metabolic pathways related to methane production (nitrogen fixation and dissimilatory sulfite reduction).

View Article and Find Full Text PDF

Marine oxygen minimum zones (OMZs) are widespread regions of the ocean that are currently expanding due to global warming. While inhospitable to most metazoans, OMZs are hotspots for microbial mediated biogeochemical cycling of carbon, nitrogen and sulphur, contributing disproportionately to marine nitrogen loss and climate active trace gas production. Our current understanding of microbial community responses to OMZ expansion is limited by a lack of time-resolved data sets linking multi-omic sequence information (DNA, RNA, protein) to geochemical parameters and process rates.

View Article and Find Full Text PDF

strain AHT1 is an anaerobic, sulfidogenic, moderately salt-tolerant alkaliphilic chemolithotroph isolated from hypersaline soda lake sediments in northeastern Mongolia. It is a Gram-positive bacterium with low GC content, within the phylum . Here we report its draft genome sequence, which consists of 34 contigs with a total sequence length of 3.

View Article and Find Full Text PDF

Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H.

View Article and Find Full Text PDF

Bacteria living on and in leaves and roots influence many aspects of plant health, so the extent of a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. Laboratory-based studies, because they poorly simulate true environmental heterogeneity, may misestimate or totally miss the influence of certain host genes on the microbiome. Here we report a large-scale field experiment to disentangle the effects of genotype, environment, age and year of harvest on bacterial communities associated with leaves and roots of Boechera stricta (Brassicaceae), a perennial wild mustard.

View Article and Find Full Text PDF

Previous studies on enhanced biological phosphorus removal (EBPR) have focused on reconstructing genomic blueprints for the model polyphosphate-accumulating organism Candidatus Accumulibacter phosphatis. Here, a time series metatranscriptome generated from enrichment cultures of Accumulibacter was used to gain insight into anerobic/aerobic metabolism and regulatory mechanisms within an EBPR cycle. Co-expressed gene clusters were identified displaying ecologically relevant trends consistent with batch cycle phases.

View Article and Find Full Text PDF

Thermotoga thermarum Windberger et al. 1989 is a member to the genomically well characterized genus Thermotoga in the phylum 'Thermotogae'. T.

View Article and Find Full Text PDF

Methanoplanus limicola Wildgruber et al. 1984 is a mesophilic methanogen that was isolated from a swamp composed of drilling waste near Naples, Italy, shortly after the Archaea were recognized as a separate domain of life. Methanoplanus is the type genus in the family Methanoplanaceae, a taxon that felt into disuse since modern 16S rRNA gene sequences-based taxonomy was established.

View Article and Find Full Text PDF

The metagenomes from two microbial consortia associated with natural oils seeping into the Pacific Ocean offshore the coast of Santa Barbara (California, USA) were determined to complement already existing metagenomes generated from microbial communities associated with hydrocarbons that pollute the marine ecosystem. This genomics resource article is the first of two publications reporting a total of four new metagenomes from oils that seep into the Santa Barbara Channel.

View Article and Find Full Text PDF

Frateuria aurantia (ex Kondô and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondô 67(T) was initially (1958) identified as a member of 'Acetobacter aurantius', a name that was not considered for the approved list.

View Article and Find Full Text PDF

Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope.

View Article and Find Full Text PDF

Members of the genus Candidatus Accumulibacter are important in many wastewater treatment systems performing enhanced biological phosphorus removal (EBPR). The Accumulibacter lineage can be subdivided phylogenetically into multiple clades, and previous work showed that these clades are ecologically distinct. The complete genome of Candidatus Accumulibacter phosphatis strain UW-1, a member of Clade IIA, was previously sequenced.

View Article and Find Full Text PDF

Owenweeksia hongkongensis Lau et al. 2005 is the sole member of the monospecific genus Owenweeksia in the family Cryomorphaceae, a poorly characterized family at the genome level thus far. This family comprises seven genera within the class Flavobacteria.

View Article and Find Full Text PDF

Gillisia limnaea Van Trappen et al. 2004 is the type species of the genus Gillisia, which is a member of the well characterized family Flavobacteriaceae. The genome of G.

View Article and Find Full Text PDF

Niabella soli Weon et al. 2008 is a member of the Chitinophagaceae, a family within the class Sphingobacteriia that is poorly characterized at the genome level, thus far. N.

View Article and Find Full Text PDF

Thauera aminoaromatica strain MZ1T, an isolate belonging to genus Thauera, of the family Rhodocyclaceae and the class the Betaproteobacteria, has been characterized for its ability to produce abundant exopolysaccharide and degrade various aromatic compounds with nitrate as an electron acceptor. These properties, if fully understood at the genome-sequence level, can aid in environmental processing of organic matter in anaerobic cycles by short-circuiting a central anaerobic metabolite, acetate, from microbiological conversion to methane, a critical greenhouse gas. Strain MZ1T is the first strain from the genus Thauera with a completely sequenced genome.

View Article and Find Full Text PDF

Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation. Colonization of the root occurs despite a sophisticated plant immune system, suggesting finely tuned discrimination of mutualists and commensals from pathogens.

View Article and Find Full Text PDF

Saprospira grandis Gross 1911 is a member of the Saprospiraceae, a family in the class 'Sphingobacteria' that remains poorly characterized at the genomic level. The species is known for preying on other marine bacteria via 'ixotrophy'. S.

View Article and Find Full Text PDF

Holophaga foetida Liesack et al. 1995 is a member of the phylum Acidobacteria and is of interest for its ability to anaerobically degrade aromatic compounds and for its production of volatile sulfur compounds through a unique pathway. The genome of H.

View Article and Find Full Text PDF

Thermodesulfatator indicus Moussard et al. 2004 is a member of the Thermodesulfobacteriaceae, a family in the phylum Thermodesulfobacteria that is currently poorly characterized at the genome level. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage.

View Article and Find Full Text PDF

Polynucleobacter necessarius subsp. asymbioticus strain QLW-P1DMWA-1(T) is a planktonic freshwater bacterium affiliated with the family Burkholderiaceae (class Betaproteobacteria). This strain is of interest because it represents a subspecies with cosmopolitan and ubiquitous distribution in standing freshwater systems.

View Article and Find Full Text PDF

Chromohalobacter salexigens is one of nine currently known species of the genus Chromohalobacter in the family Halomonadaceae. It is the most halotolerant of the so-called 'moderately halophilic bacteria' currently known and, due to its strong euryhaline phenotype, it is an established model organism for prokaryotic osmoadaptation. C.

View Article and Find Full Text PDF