Monosodium L-glutamate monohydrate, a multiple oxygen site (eight) compound, is used to demonstrate that a combination of high-resolution solid-state NMR spectroscopic techniques opens up new possibilities for (17)O as a nuclear probe of biomolecules. Eight oxygen sites have been resolved by double rotation (DOR) and multiple quantum (MQ) NMR experiments, despite the (17)O chemical shifts lying within a narrow shift range of <50 ppm. (17)O DOR NMR not only provides high sensitivity and spectral resolution, but also allows a complete set of the NMR parameters (chemical shift anisotropy and electric-field gradient) to be determined from the DOR spinning-sideband manifold.
View Article and Find Full Text PDFThe application of double rotation (DOR) NMR to crystalline materials (both inorganic and organic) has made tremendous strides in providing site-specific information about materials in recent years. However (17)O DOR has yet to demonstrate its potential in disordered materials such as glasses. In the present study, we have successfully recorded high resolution (17)O DOR spectra of vitreous B(2)O(3) (v-B(2)O(3)), a highly effective glass-forming oxide of considerable technological importance.
View Article and Find Full Text PDFUsing a two-dimensional multiple-quantum (MQ) double rotation (DOR) experiment the contributions of the chemical shift and quadrupolar interaction to isotropic resonance shifts can be completely separated. Spectra were acquired using a three-pulse triple-quantum z-filtered pulse sequence and subsequently sheared along both the nu(1) and nu(2) dimensions. The application of this method is demonstrated for both crystalline (RbNO(3)) and amorphous samples (vitreous B(2)O(3)).
View Article and Find Full Text PDFIn this contribution, we extend the theory of symmetry-based pulse sequences of types CN(n) (nu) and RN(n) (nu) in magic-angle-spinning nuclear resonance spectroscopy [M. H. Levitt, in Encyclopedia of Nuclear Magnetic Resonance, edited by D.
View Article and Find Full Text PDFThe direct detection of hydroxyl oxygen (O-H) by (17)O double-rotation (DOR) NMR is very challenging because of the strong O-H dipole interaction. It is shown that deuteration of the hydroxyl site overcomes this using glycine.HCl as an illustration.
View Article and Find Full Text PDFA solid-state 17O NMR 1H-decoupled double angle rotation (DOR) study of monosodium l-glutamate monohydrate (l-MSG) is reported. It is shown that all eight inequivalent sites can be resolved with DOR line widths ( approximately 65 Hz) approximately 120 times narrower than those in the MAS spectrum. The lines are tentatively assigned on the basis of their behavior under proton decoupling and the isotropic chemical shift and the quadrupole interaction parameter for each extracted by a combination of DOR and 3Q MAS at variable magnetic fields.
View Article and Find Full Text PDFA systematic solid-state 17O NMR study of a series of carboxylic compounds, maleic acid, chloromaleic acid, KH maleate, KH chloromaleate, K2 chloromaleate, and LiH phthalate.MeOH, is reported. Magic-angle spinning (MAS), triple-quantum (3Q) MAS, and double angle rotation (DOR) 17O NMR spectra were recorded at high magnetic fields (14.
View Article and Find Full Text PDFA combined approach is presented which expands the applicability of double rotation (DOR) by overcoming its most prominent disadvantages: spinning stability and sensitivity. A new design using air-bearings for the inner rotor and a computer-assisted start-up procedure allows DOR operation over in principle unlimited time at outer rotor speeds of up to 2000Hz. Sensitivity enhancement of the DOR experiment is achieved by applying amplitude-modulated adiabatic pulses such as the double frequency sweep (DFS) before pulse excitation.
View Article and Find Full Text PDFRecent developments in sample rotation technology have had a profound impact on magic-angle-spinning NMR. First, rotation frequencies approaching, and even exceeding, strong homonuclear spin interactions have made high-resolution solid-state (1)H spectroscopy much more accessible. Second, the new concept of fast rotation sweep spectroscopy has emerged.
View Article and Find Full Text PDF