Publications by authors named "Tiira Johansson"

Varying HLA allele-specific expression levels are associated with human diseases, such as graft versus host disease (GvHD) in hematopoietic stem cell transplantation (HSCT), cytotoxic T cell response and viral load in HIV infection, and the risk of Crohn's disease. Only recently, RNA-based next generation sequencing (NGS) methodologies with accompanying bioinformatics tools have emerged to quantify HLA allele-specific expression replacing the quantitative PCR (qPCR) -based methods. These novel NGS approaches enable the systematic analysis of the HLA allele-specific expression changes between individuals and between normal and disease phenotypes.

View Article and Find Full Text PDF

Identification of human leukocyte antigen (HLA) alleles from next-generation sequencing (NGS) data is challenging because of the high polymorphism and mosaic nature of HLA genes. Owing to the complex nature of HLA genes and consequent challenges in allele assignment, Oxford Nanopore Technologies' (ONT) single-molecule sequencing technology has been of great interest due to its fitness for sequencing long reads. In addition to the read length, ONT's advantages are its portability and possibility for a rapid real-time sequencing, which enables a simultaneous data analysis.

View Article and Find Full Text PDF

The HLA gene complex is the most important single genetic factor in susceptibility to most diseases with autoimmune or autoinflammatory origin and in transplantation matching. Most studies have focused on the vast allelic variation in these genes; only a few studies have explored differences in the expression levels of HLA alleles. In this study, we quantified mRNA expression levels of HLA class I and II genes from peripheral blood samples of 50 healthy individuals.

View Article and Find Full Text PDF
Article Synopsis
  • The alternative pathway of complement is crucial for innate immunity, but needs to be down-regulated by plasma factor H (FH) to protect host cells from damage.
  • Mutations in specific FH domains can lead to diseases and allow pathogens to evade immune responses.
  • The study reveals that a recombinant form of FH (FH5-7) enhances the immune response, increasing phagocytosis of not only FH-binding microbes but also those that don’t bind FH, by disrupting complement regulation on HDL particles.
View Article and Find Full Text PDF

Fibrinolysis is important in cell migration and tightly regulated by specific inhibitors and activators; of the latter, urokinase (uPA) associates with enhancement of cell migration. Active uPA is formed through cleavage of the single-chain uPA (scuPA). The Salmonella enterica strain 14028R cleaved human scuPA at the peptide bond Lys158-Ile159, the site cleaved also by the physiological activator human plasmin.

View Article and Find Full Text PDF