Membrane fouling is the major factor limiting the wider applicability of the membrane-based technologies in water treatment and in separation and purification processes of biorefineries, pulp and paper industry, food industry and other sectors. Endeavors to prevent and minimize fouling requires a deep understanding on the fouling mechanisms and their relative effects. In this study, Brunauer-Emmett-Teller (BET) nitrogen adsorption/desorption technique was applied to get an insight into pore-level membrane fouling phenomena occurring in ultrafiltration of wood-based streams.
View Article and Find Full Text PDFFouling as an intricate process is considered as the main obstacle in membrane technologies, and its control is one of the main areas of attention in membrane processes. In this study, a commercial polyethersulfone ultrafiltration membrane (MWCO: 4000 g/mol) was surface modified with different concentrations of vanillin as an antifouling and hydrophilicity promoter to improve its performance. The presence of vanillin and its increasing adsorption potential trends in higher vanillin concentrations were clearly confirmed by observable changes in FTIR (Fourier transform infrared) spectra after modification.
View Article and Find Full Text PDFMembrane fouling, i.e. accumulation of unwanted material on the surface of the membrane is a significant problem in filtration processes since it commonly degrades membrane performance and increases operating costs.
View Article and Find Full Text PDFPurpose: Enriched environment housing enhances brain plasticity and improves recovery of impaired sensorimotor and cognitive functions of rats subjected to transient middle cerebral artery occlusion (MCAO). The present study applied microarray technique to investigate the molecular basis through which enriched environment might improve spatial learning in MCAO rats.
Methods: MCAO rats were housed in enriched environment or in standard single cages, and sham-operated rats were housed in standard single cages.
Post-stroke seizures occur in 5-20% of patients. Modeling of stroke-induced seizures in animals provides a useful tool for investigating the molecular basis of epileptogenesis and for developing therapies for stroke patients at increased risk for epileptogenesis. The questions addressed in the study were: (1) Do rats develop spontaneous seizures after transient occlusion of the middle cerebral artery (MCAO)? (2) Is epileptogenesis associated with impaired hippocampus-dependent spatial learning and memory? (3) Are the functional abnormalities linked to axonal plasticity in the dentate gyrus? (4) Does the sensorimotor impairment induced by MCAO predict the risk of epileptogenesis? Adult male Sprague-Dawley rats were subjected to MCAO for 120 min.
View Article and Find Full Text PDFAtipamezole, a selective alpha(2)-adrenoceptor antagonist, enhances recovery of sensorimotor function after focal cerebral ischemia in rats. The aim of the present study was to further characterize the effects of atipamezole treatment combined with enriched-environment housing in ischemic rats by evaluating spontaneous exploratory activity in the cylinder test. The right middle cerebral artery (MCA) of rats was occluded for 120 min using the intraluminal filament method.
View Article and Find Full Text PDF