Understanding the drivers of community assembly is critical for predicting the future of biodiversity and ecosystem services. Ecological selection ubiquitously shapes communities by selecting for individuals with the most suitable trait combinations. Detecting selection types on key traits across environmental gradients and over time has the potential to reveal the underlying abiotic and biotic drivers of community dynamics.
View Article and Find Full Text PDFProtected areas are considered fundamental to counter biodiversity loss. However, evidence for their effectiveness in averting local extinctions remains scarce and taxonomically biased. We employ a robust counterfactual multi-taxon approach to compare occupancy patterns of 638 species, including birds (150), mammals (23), plants (39) and phytoplankton (426) between protected and unprotected sites across four decades in Finland.
View Article and Find Full Text PDF