Publications by authors named "Tiina M J Kipari"

Chronically elevated glucocorticoid levels impair cognition and are pro-inflammatory in the brain. Deficiency or inhibition of 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1), which converts inactive into active glucocorticoids, protects against glucocorticoid-associated chronic stress- or age-related cognitive impairment. Here, we hypothesised that 11β-HSD1 deficiency attenuates the brain cytokine response to inflammation.

View Article and Find Full Text PDF

11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) predominantly converts inert glucocorticoids into active forms, thereby contributing to intracellular glucocorticoid levels. 11β-HSD1 is dynamically regulated during inflammation, including in macrophages where it regulates phagocytic capacity. The resolution of inflammation in some disease models including inflammatory arthritis is impaired by 11β-HSD1 deficiency or inhibition.

View Article and Find Full Text PDF

Endogenous glucocorticoid action within cells is enhanced by prereceptor metabolism by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts intrinsically inert cortisone and 11-dehydrocorticosterone into active cortisol and corticosterone, respectively. 11β-HSD1 is highly expressed in immune cells elicited to the mouse peritoneum during thioglycollate-induced peritonitis and is down-regulated as the inflammation resolves. During inflammation, 11β-HSD1-deficient mice show enhanced recruitment of inflammatory cells and delayed acquisition of macrophage phagocytic capacity.

View Article and Find Full Text PDF

The role of resident renal mononuclear phagocytes in acute kidney injury is controversial with experimental data suggesting both deleterious and protective functions. To help resolve this, we used mice transgenic for the human diphtheria toxin receptor under the control of the CD11b promoter and treated them with diphtheria toxin, or liposomal clodronate, or both to deplete monocyte/mononuclear phagocytes prior to renal ischemia/reperfusion injury. Although either system effectively depleted circulating monocytes and resident mononuclear phagocytes, depletion was most marked in diphtheria toxin-treated mice.

View Article and Find Full Text PDF