Importance: Alzheimer disease (AD) is the leading cause of death in individuals with Down syndrome (DS). Previous studies have suggested that the APOE ɛ4 allele plays a role in the risk and age at onset of dementia in DS; however, data on in vivo biomarkers remain scarce.
Objective: To investigate the association of the APOE ɛ4 allele with clinical and multimodal biomarkers of AD in adults with DS.
Background: Alzheimer's disease and its complications are the leading cause of death in adults with Down syndrome. Studies have assessed Alzheimer's disease in individuals with Down syndrome, but the natural history of biomarker changes in Down syndrome has not been established. We characterised the order and timing of changes in biomarkers of Alzheimer's disease in a population of adults with Down syndrome.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
December 2019
Introduction: People with Down's syndrome (DS) have a high prevalence of early-onset Alzheimer's disease. Early markers of Alzheimer's disease pathology identifiable before clinical change are needed for the evaluation of preventative treatments. The retina, an extension of the brain, may provide a noninvasive imaging site.
View Article and Find Full Text PDFIntroduction: Comorbid Alzheimer disease pathologies are frequently found in people with Down syndrome (DS). We report a deep phenotyping study undertaken over 7 years in a participant with DS who was nondemented at baseline but developed dementia after 5 years.
Methods: Throughout the course of the study, the participant was seen 4 times (2010, 2013, 2015, and 2017).
Down's syndrome is a chromosomal disorder that invariably results in both intellectual disability and Alzheimer's disease neuropathology. However, only a limited number of studies to date have investigated intrinsic brain network organisation in people with Down's syndrome, none of which addressed the links between functional connectivity and Alzheimer's disease. In this cross-sectional study, we employed C-Pittsburgh Compound-B (PiB) positron emission tomography in order to group participants with Down's syndrome based on the presence of fibrillar beta-amyloid neuropathology.
View Article and Find Full Text PDFOlder adults with Down syndrome (DS) often have Alzheimer's disease (AD) neuropathologies. Although positron emission tomography imaging studies of amyloid deposition (beta amyloid, Aβ) have been associated with worse clinical prognosis and cognitive impairment, their relationships with cortical thickness remain unclear in people with DS. In a sample of 44 DS adults who underwent cognitive assessments, [C]-PiB positron emission tomography, and T1-weighted magnetization-prepared rapid gradient echo, we used mixed effect models to evaluate the spatial relationships between Aβ binding with patterns of cortical thickness.
View Article and Find Full Text PDFBackground: Down syndrome (DS; trisomy 21) individuals have a spectrum of hematopoietic and neuronal dysfunctions and by the time they reach the age of 40 years, almost all develop Alzheimer's disease (AD) neuropathology which includes senile plaques and neurofibrillary tangles. Inflammation and innate immunity are key players in AD and DS. Triggering receptor expressed in myeloid cells-2 (TREM2) variants have been identified as risk factors for AD and other neurodegenerative diseases.
View Article and Find Full Text PDFIndividuals with Down syndrome (DS) are more likely to experience earlier onset of multiple facets of physiological aging. This includes brain atrophy, beta amyloid deposition, cognitive decline, and Alzheimer's disease-factors indicative of brain aging. Here, we employed a machine learning approach, using structural neuroimaging data to predict age (i.
View Article and Find Full Text PDFPeople with Down syndrome (DS) have a neurodevelopmentally distinct brain and invariably developed amyloid neuropathology by age 50. This cross-sectional study aimed to provide a detailed account of DS brain morphology and the changes occuring with amyloid neuropathology. Forty-six adults with DS underwent structural and amyloid imaging-the latter using Pittsburgh compound B (PIB) to stratify the cohort into PIB-positive (n = 19) and PIB-negative (n = 27).
View Article and Find Full Text PDFIntroduction: Adults with Down syndrome (DS) invariably develop Alzheimer's disease (AD) neuropathology. Understanding amyloid deposition in DS can yield crucial information about disease pathogenesis.
Methods: Forty-nine adults with DS aged 25-65 underwent positron emission tomography with Pittsburgh compound-B (PIB).