Discovery of insulin in 1921 changed the lives of patients with type 1 diabetes (T1DM) forever. What had been a death sentence became a manageable, albeit chronic, disease. Insulin did not cure the disease, as it did not address the actual disease process, but instead treated its sequelae, namely elevated blood sugars.
View Article and Find Full Text PDFWe previously reported that continuous 24-month costimulation blockade by abatacept significantly slows the decline of β-cell function after diagnosis of type 1 diabetes. In a mechanistic extension of that study, we evaluated peripheral blood immune cell subsets (CD4, CD8-naive, memory and activated subsets, myeloid and plasmacytoid dendritic cells, monocytes, B lymphocytes, CD4(+)CD25(high) regulatory T cells, and invariant NK T cells) by flow cytometry at baseline and 3, 6, 12, 24, and 30 months after treatment initiation to discover biomarkers of therapeutic effect. Using multivariable analysis and lagging of longitudinally measured variables, we made the novel observation in the placebo group that an increase in central memory (CM) CD4 T cells (CD4(+)CD45R0(+)CD62L(+)) during a preceding visit was significantly associated with C-peptide decline at the subsequent visit.
View Article and Find Full Text PDFOBJECTIVE We previously reported that 2 years of costimulation modulation with abatacept slowed decline of β-cell function in recent-onset type 1 diabetes (T1D). Subsequently, abatacept was discontinued and subjects were followed to determine whether there was persistence of effect. RESEARCH DESIGN AND METHODS Of 112 subjects (ages 6-36 years) with T1D, 77 received abatacept and 35 received placebo infusions intravenously for 27 infusions over 2 years.
View Article and Find Full Text PDFAbatacept delayed progression of type 1 diabetes (T1D) when administered soon after diagnosis. Its use in T1D is expanding to prevention trials and, therefore, it is important to fully characterize its immunosuppressive effect. We compared antibody responses to trivalent inactivated influenza vaccine (TIIV) administered during 2 consecutive seasons and to tetanus toxoid (TT) vaccine administered after 24 months of treatment in115 early onset T1D subjects randomly assigned to 24 months of abatacept (N=71) or placebo (N=34).
View Article and Find Full Text PDFTo determine whether serum levels of 25-hydroxyvitamin D (25(OH)D) in young adults are associated with risk of type 1 diabetes mellitus (T1D), we conducted a prospective, nested case-control study among US active-duty military personnel with serum in the US Department of Defense Serum Repository, identifying 310 T1D cases diagnosed between 1997 and 2009 with at least 2 serum samples collected before disease onset and 613 controls matched to cases on age, sex, race/ethnicity, branch of military service, and dates of serum collection. Conditional logistic regression was used to estimate rate ratios and 95% confidence intervals. Among non-Hispanic whites, those with average 25(OH)D levels of ≥ 100 nmol/L had a 44% lower risk of developing T1D than those with average 25(OH)D levels < 75 nmol/L (rate ratio = 0.
View Article and Find Full Text PDFObjective: We examined changes in GAD65 and ICA-512 autoantibodies (GADA and IA-2A) during progression to type 1 diabetes (T1D).
Research Design And Methods: Diabetes Prevention Trial-Type 1 (DPT-1) participants were assessed for changes in positivity and titers of GADA and IA-2A during the progression to T1D.
Results: Among 99 progressors to T1D with GADA and IA-2A measurements at baseline and diagnosis (mean interval = 3.
Background: The immunopathogenesis of type 1 diabetes mellitus is associated with T-cell autoimmunity. To be fully active, immune T cells need a co-stimulatory signal in addition to the main antigen-driven signal. Abatacept modulates co-stimulation and prevents full T-cell activation.
View Article and Find Full Text PDFBackground: Glutamic acid decarboxylase (GAD) is a major target of the autoimmune response that occurs in type 1 diabetes mellitus. In animal models of autoimmunity, treatment with a target antigen can modulate aggressive autoimmunity. We aimed to assess whether immunisation with GAD formulated with aluminum hydroxide (GAD-alum) would preserve insulin production in recent-onset type 1 diabetes.
View Article and Find Full Text PDFRecently described forkhead box protein 3 (FoxP3) transcription factor is a key molecule in CD4+ CD25hi+ T-cell characterization. Invariant NK T (iNKT) cells are also characterized as regulatory cells modulating the immune response by rapidly producing T(h)1 and T(h)2 cytokines. We aimed to analyze cellular markers important in regulatory features of human iNKT cells and to study their role in functional assays.
View Article and Find Full Text PDFTher Adv Endocrinol Metab
February 2011
Type 1 diabetes mellitus (T1DM) affects 1 in 300 people and the incidence of the disease is rising worldwide. T1DM is caused by chronic autoimmune destruction of the insulin-producing β-cells. The exact etiology and primary auto-antigen are not yet known.
View Article and Find Full Text PDFThe secretion of IL-9, initially recognized as a Th2 cytokine, was recently attributed to a novel CD4 T cell subset termed Th9 in the murine system. However, IL-9 can also be secreted by mouse Th17 cells and may mediate aspects of the proinflammatory activities of Th17 cells. Here we report that IL-9 is secreted by human naive CD4 T cells in response to differentiation by Th9 (TGF-beta and IL-4) or Th17 polarizing conditions.
View Article and Find Full Text PDFThere is a growing body of evidence to suggest that the autoimmunity observed in type 1 diabetes mellitus (T1DM) is the result of an imbalance between autoaggressive and regulatory cell subsets. Therapeutics that supplement or enhance the existing regulatory subset are therefore a much sought after goal in this indication. Here, we report the results of a double blind, placebo controlled, phase I clinical trial of a novel antigen-specific therapeutic in 12 subjects with recently diagnosed T1DM.
View Article and Find Full Text PDFAutoimmune diseases including type 1 diabetes (T1D) are thought to have a Th1/Th17 bias. The underlying mechanisms driving the activation and differentiation of these proinflammatory T cells are unknown. We examined the monocytes isolated directly from the blood of T1D patients and found they spontaneously secreted the proinflammatory cytokines IL-1beta and IL-6, which are known to induce and expand Th17 cells.
View Article and Find Full Text PDFObjective: There is limited information from large-scale prospective studies regarding the prediction of type 1 diabetes by specific types of pancreatic islet autoantibodies, either alone or in combination. Thus, we studied the extent to which specific autoantibodies are predictive of type 1 diabetes.
Research Design And Methods: Two cohorts were derived from the first screening for islet cell autoantibodies (ICAs) in the Diabetes Prevention Trial-Type 1 (DPT-1).
Cell surface determinants, cytokines and antibodies secreted by hematopoietic cells are used to classify their lineage and function. Currently available techniques are unable to elucidate multiple secreted proteins while also assigning phenotypic surface-displayed markers to the individual living cells. Here, a soft lithographic method, microengraving, was adapted for the multiplexed interrogation of populations of individual human peripheral blood mononuclear cells for secreted cytokines (IFN-gamma and IL-6), antigen-specific antibodies, and lineage-specific surface-expressed markers.
View Article and Find Full Text PDFBackground: We report the immunological and pathological findings of a 52-year-old woman, who died two years after the second of two islet transplants performed using the Edmonton protocol. After each islet transplant, she gradually lost insulin independence while maintaining low levels of C-peptide secretion.
Methods: A complete autopsy was performed including pathological and immunohistochemical analysis of hepatic allogeneic islets and native pancreatic islets to identify rejection or autoimmunity.
Type 1 diabetes mellitus (T1DM) in humans is characterized by the T-cell-dependent destruction of the insulin producing pancreatic beta cells; however, the precise pathogenesis of the disease, especially the initiation of pathologic immune response, is still largely unknown. We hypothesized that the function of human CD4+ T cells is altered in T1DM and analyzed unstimulated human peripheral blood CD4+ T-cell gene expression. We used a novel three-way comparison of DNA microarray data of CD4+ T cells isolated from patients with new onset T1DM, patients with long-term Type 2 diabetes (T2DM), and from healthy control subjects in order to eliminate any possible influence of glucose homeostasis on our findings.
View Article and Find Full Text PDFInvariant NKT (iNKT) cells are considered to be important in some autoimmune diseases including Type 1 diabetes mellitus (T1DM). So far, the published data are contradictory in regard to the role of iNKT cells in T1DM. We aimed to study iNKT cell frequency and the function of different iNKT cell subgroups in T1DM.
View Article and Find Full Text PDFContext: Human leukocyte antigen (HLA) DQ haplotypes have the strongest genetic association with type 1 diabetes (T1DM) risk.
Objective: The objective of the study was to analyze whether HLA DQ alleles influence the development of antiislet autoantibodies, the progression to T1DM among autoantibody-positive relatives, or both.
Design: The Diabetes Prevention Trial-1 screened more than 90,000 nondiabetic relatives of patients for cytoplasmic islet-cell autoantibody (ICA) expression between 1994 and 2002.
The objective of this study was to determine the extent to which different screening strategies could identify a population of nondiabetic relatives of a proband with type 1 diabetes who had two or more immunologic markers from the group consisting of islet cell antibodies (ICA), micro insulin autoantibodies (MIAA), GAD65 autoantibodies (GAA), and ICA512 autoantibodies (ICA512AA). Relatives of subjects with type 1 diabetes were screened for ICA as part of the Diabetes Prevention Trial-Type 1. A total of 71,148 samples were also tested for GAA and ICA512AA.
View Article and Find Full Text PDFInsulin-dependent type 1 diabetes is an autoimmune disease mediated by T lymphocytes recognizing pancreatic islet cell antigens. Glutamic acid decarboxylase 65 (GAD65) appears to be an important autoantigen in the disease. However, T cells from both patients with type 1 diabetes and healthy subjects vigorously proliferate in response to GAD65 stimulation ex vivo, leading us to postulate that the critical event in the onset of human diabetes is the activation of autoreactive T cells.
View Article and Find Full Text PDF